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Abstract

Shape is a fundamental property of physical objects. It provides crucial infor-

mation for various critical behaviors from object recognition to motor plan-

ning. The fundamental question here for cognitive science is to understand

object shape perception, i.e., how our brains extract shape information from

sensory stimuli and make use of it. In other words, we want to understand

the representations and algorithms our brains use to achieve successful shape

perception. This thesis reports a computational theory of shape perception

that uses modality-independent, part-based, 3D, object-centered shape rep-

resentations and frames shape perception as Bayesian inference over such

representations. In a series of behavioral, neuroimaging and computational

studies reported in the following chapters, we test various aspects of this

proposed theory and show that it provides a promising approach to under-

standing shape perception.
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Chapter 1

Introduction

Shape is a fundamental property of physical objects. It provides crucial

information for various critical behaviors from object recognition to motor

planning. The fundamental question here for cognitive science is to under-

stand shape perception, i.e., how our brains extract shape information from

sensory stimuli and make use of it. In other words, we want to understand

the representations and algorithms our brains use to achieve successful shape

perception. This thesis reports a computational theory of shape perception

that uses modality-independent, part-based, 3D, object-centered shape rep-

resentations, and frames shape perception as Bayesian inference over such

representations. In a series of behavioral, neuroimaging and computational

studies reported in the following chapters, we test various aspects of this

proposed theory and show that it provides a promising approach to under-

standing shape perception.

Research on shape perception is as old as cognitive science itself (Palmer,

1999). However, we still know very little about it (Peissig & Tarr, 2007;
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Gauthier & Tarr, 2016). Researchers have investigated various questions on

the nature of shape representations such as whether they are 2D vs. 3D,

viewer-centered vs. object-centered, or view-based vs. part-based. Yet, one

common feature of all this research is its focus on visual shape perception.

Even though researchers studied perception of shape through other modal-

ities, there had been little interest on multisensory shape perception until

recently (Newell, 2010; Lacey & Sathian, 2011; Yildirim & Jacobs, 2012,

2013). We know both from our daily experience and research on perception

that there is significant cross-talk between senses (Amedi, von Kriegstein,

van Atteveldt, Beauchamp, & Naumer, 2005; Lacey & Sathian, 2014). Even

simple feats like picking up a coffee mug require processing of shape informa-

tion through both visual and haptic modalities. Empirical support for the

multisensory nature of shape perception comes from studies on cross-modal

perception and recognition. Subjects can easily recognize an object through

a modality different than the one through which the object was initially pre-

sented, and cross-modal similarity judgments are strongly correlated with

within modality similarity judgments (Cooke, Jakel, Wallraven, & Bulthoff,

2007; Gaissert, Wallraven, & Bulthoff, 2010; Gaissert, Bulthoff, & Wall-

raven, 2011; Gaissert & Wallraven, 2012; Wallraven, Bulthoff, Waterkamp,

van Dam, & Gaissert, 2014). Further support—and perhaps the strongest

evidence—for the multisensory nature of shape perception is provided by

neuroimaging studies that established lateral occipital complex (LOC) in the

brain as a multisensory shape region. Studies have shown that visual and
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haptic stimulation lead to similar neural responses in LOC (Amedi, Malach,

Hendler, Peled, & Zohary, 2001; Grill-Spector, Kourtzi, & Kanwisher, 2001;

Kourtzi & Kanwisher, 2001; Amedi, Jacobson, Hendler, Malach, & Zohary,

2002; Hayworth & Biederman, 2006; Hayworth, Lescroart, & Biederman,

2011).1

This multisensory nature of perception requires our brains to abstract

away from the sensory-specific inputs to modality-independent representa-

tions, and this constitutes the first part of our hypothesis, i.e., shape repre-

sentations are modality-independent. The behavioral experiment reported in

Chapter 2 provides support for this hypothesis by showing that object shape

is perceived similarly regardless of whether an object is presented visually

or haptically. However, a significant question remains. How do our brains

extract these modality-independent representations from sensory-specific in-

puts? The main contribution of the study presented in Chapter 2 is a com-

putational level analysis (in the sense of Marr’s levels of analyses (Marr,

1982)) of multisensory perception. We argue that any system capable of

learning modality-independent, conceptual representations from modality-

specific sensory signals will include three components: a representational

language for characterizing modality-independent representations, a set of

sensory-specific forward models that map from modality-independent repre-

sentations to sensory-specific inputs, and an inference algorithm for inverting
1However, a recent study (Snow, Goodale, & Culham, 2015) suggests that LOC is not

essential for haptic recognition of object shape.
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these forward models. We show that a computational model of shape percep-

tion built on this framework can explain modality-invariance, and provides

an accurate account of people’s shape similarity judgments within and across

visual and haptic modalities.

The second part of our hypothesis is that shape representations are part-

based, as opposed to view-based. The part-based hypothesis claims that

object parts are represented explicitly. For example, the representation for

a human body consists of the representations of its parts (limbs, head, torso

etc.) and the spatial relations between these parts. In contrast, the view-

based hypothesis argues for a holistic object representation, which simply

consists of a collection of stored views (e.g., 2D images) of the object, with

no explicit representation of the parts. It might seem obvious that people

know about object parts, and that parts play a significant role in cognition

(Tversky & Hemenway, 1984). When we see a car, we also see that it has

wheels. The view-based hypothesis does not refute the significance of parts

but simply claims that the representation for a car and the representation for

a wheel are separate; the representation for wheel is not reused or referenced

in the representation for car.

The part-based hypothesis has a long history in cognitive science, and

various influential models of shape perception are based on the part-based

hypothesis (Marr & Nishihara, 1978; Biederman, 1987). Classical evidence

for this hypothesis is Biederman’s studies that showed primed visual recog-

nition is principally mediated by parts, and recognition suffers dramatically
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when part-related information is removed (Biederman & Cooper, 1991; Bie-

derman, 2007). Later studies also found evidence for explicit representation

of spatial relations between parts (Hayworth & Biederman, 2006; Hayworth

et al., 2011). Overall, the strength of the part-based hypothesis lies in the

richness of its representations. The representation for a car and a motorcycle

can use the same representation for wheels, and hence part-based represen-

tations capture the compositionality of many objects in a natural manner.

As pointed out by various researchers, compositionality is crucial for efficient

perception and learning (Tenenbaum, Kemp, Griffiths, & Goodman, 2011;

Lake, Ullman, Tenenbaum, & Gershman, 2016).

The main motivation behind the view-based hypothesis has been the find-

ings on viewpoint-dependency of object recognition. Various studies have

shown that subjects find it harder to recognize an object as it is rotated

away from the viewpoint from which it was initially presented (Bulthoff &

Edelman, 1992; Tarr, Williams, Hayward, & Gauthier, 1998). This is taken

as evidence for a view-based recognition mechanism, in which the incoming

image is compared to the stored views of an object to achieve recognition.

As the test viewpoint gets farther and farther away from the stored training

view, recognition becomes more difficult since the incoming image is less and

less similar to the stored training view. One main difficulty with the view-

based hypothesis is the purely sensory-specific nature of its representations.

This is hard to reconcile with the multisensory nature of shape perception

and the claim for modality-independent shape representations.
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The part-based hypothesis along with the opposing view-based hypothesis

were the subject of fierce debate during the 1980s and 1990s, and the jury still

seems to be out on which, if any, of these hypotheses provide a better account

of shape perception (Tarr & Bulthoff, 1995; Biederman & Gerhardstein, 1995;

Peissig & Tarr, 2007). This is partly because the competing hypotheses were

rarely rigorously defined and evaluated (which we attempt to remedy in our

study presented in Chapter 4). It is also, to some extent, due to the inherent

difficulty of our scientific endeavor. With enough ingenuity, one can almost

always come up with an account of some empirical data compatible with

either the part-based or view-based hypothesis. In this respect, neuroimaging

and especially neural decoding provide unique opportunities. We can look

directly into the brain and investigate whether neural shape representations

are part-based or view-based. In Chapter 3, we present evidence that human

lateral occipital cortex (LOC) carries a part-based shape representation, i.e.,

shape representations are part-based. We show that linear classifiers trained

on neural data from LOC on a subset of the objects successfully predict a

novel object based on its component part structure. We also show that visual

and haptic exploration of objects lead to similar patterns of neural activity

in human LOC, which provides further support to the modality-independent

nature of shape representations.

The third part of our hypothesis is that shape representations are 3D

and object-centered, i.e., they encode 3D geometry of objects explicitly in an

object-centered coordinate system, as opposed to simply storing 2D views of
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objects in a viewer-centered manner. Here again the debate is mainly be-

tween part-based and view-based hypotheses. Even though the part-based

hypothesis does not necessarily claim 3D shape representations, historically,

models based on the part-based hypothesis almost exclusively used 3D repre-

sentations. Such models have been criticized for failing to capture viewpoint-

dependency of object recognition. Several researchers have argued that 3D

representations would predict no deterioration in performance for novel view-

points since the 3D model of the object could be rotated mentally to com-

pensate for viewpoint differences (Bulthoff & Edelman, 1992). As we briefly

discussed above, this viewpoint-dependency was in fact the main motivation

behind view-based hypothesis, which argued for a recognition mechanism

based on stored 2D views. However, view-based representations are rather

impoverished and stand in stark contrast to the richness of our perception.

In Chapter 4, we argue that the case for 3D, object-centered shape repre-

sentations is in fact strong, and we provide evidence that shape perception

is best understood as statistical inference of 3D shape in an object-centered

coordinate system. First, we show that our model accounts for viewpoint-

dependency of object recognition, traditionally regarded as evidence against

people’s use of 3D object-centered shape representations. Second, we report

the results of an experiment using a shape similarity task, and present an

extensive evaluation of existing models’ abilities to account for the exper-

imental data. We find that our shape inference model captures subjects’

behaviors better than competing models, including view-based models and



8

highly successful models of object recognition such as deep convolutional

neural networks.

So far, we have described our hypothesis on the representation of ob-

ject shape. However, no model of perception is complete without specifying

the algorithms that infer these representations from sensory inputs and ulti-

mately use them to produce behavior. This point, unfortunately, has often

been overlooked. For example, part-based models generally left the mecha-

nism for extracting and comparing representations unspecified. Such prob-

lems made it harder to evaluate existing models and ultimately make progress

because the predictions from a model were often unclear. A computational

model should be a model of the whole psychological process under investiga-

tion, from sensory inputs to behavior. Therefore, we augment our emphasis

on representation with an emphasis on the idea that shape perception is a

form of statistical inference, which constitutes the last part of our hypothesis.

This emphasis on statistical inference places our hypothesis in the tradition

usually called “perception as inference” or “analysis-by-synthesis” (Yuille &

Kersten, 2006). Here perception is characterized as the inference problem of

extracting a description of the external world from the sensory inputs. This

hypothesis has been fruitfully applied to various aspects of cognition from

visual and multisensory perception to high-level cognition (Knill & Richards,

1996; Kersten & Yuille, 2003; Jacobs & Kruschke, 2011). Our work here can

be seen as an application of this hypothesis to multisensory shape percep-

tion. Our emphasis on statistical inference makes up an important part of our
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work, and it is a theme that runs across all chapters in this thesis. For exam-

ple, in Chapter 2, we argue that Bayesian inference is a crucial component of

multisensory perception that enables acquiring modality-independent repre-

sentations from sensory-specific inputs. And, in Chapter 4, we show that this

emphasis on inference enables us to explain how 3D shape representations

can give rise to view-dependent recognition.

In Chapter 5, we provide a summary and discussion of the contributions

of this thesis and finish by presenting a few promising future directions.
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Chapter 2

From Sensory Signals to
Modality-Independent Conceptual Rep-
resentations: A Probabilistic Language
of Thought Approach

Introduction

While eating breakfast, you might see your coffee mug, grasp your coffee mug,

or both. When viewing your mug, your visual system extracts and represents

the shape of your mug. Similarly, when grasping your mug, your haptic sys-

tem also extracts and represents the shape of your mug. Are the represen-

tations acquired when viewing your mug distinct from the representations

acquired when grasping your mug? If so, these would be modality-specific

representations. Or does there exist a level at which the shape represen-

tation of your mug is the same regardless of the sensory modality through

which the mug is perceived? If so, this would be a modality-independent

representation.
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Recent experiments on crossmodal transfer of perceptual knowledge sug-

gest that people have multiple representations of object shape and can share

information across these representations. For example, if a person is trained

to visually categorize a set of objects, this person will often be able to cat-

egorize novel objects from the same categories when objects are grasped

but not seen (Wallraven et al., 2014; Yildirim & Jacobs, 2013). Because

knowledge acquired during visual training is used during haptic testing, this

finding suggests that neither the learning mechanisms used during training

nor the representations acquired during training are exclusively visual. To

the contrary, the finding indicates the existence of both visual and haptic

object representations as well as the ability to share or transfer knowledge

across these representations. Successful categorization of objects regardless

of whether the objects are seen or grasped illustrates modality invariance, an

important type of perceptual constancy.

What type of learning mechanisms and mental representations might un-

derlie modality invariance? One possible answer is that people are able

to abstract over their modality-specific representations in order to acquire

modality-independent representations. For instance, people might use modality-

specific representations of objects as a foundation for inferring modality-

independent representations characterizing objects’ intrinsic properties. To

understand the nature of the latter representations, it is important to recog-

nize the distinction between objects’ intrinsic (or “deep”) properties and the

sensory (or “surface”) features that these properties give rise to. The shape
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of an object is a modality-independent intrinsic property. Visual and haptic

features are modality-specific sensory cues to the object’s shape arising when

the object is viewed or grasped, respectively.

Once acquired, modality-independent representations may underlie modal-

ity invariance. For example, they can mediate crossmodal transfer of knowl-

edge. Consider a person who is first trained to visually categorize a set of

objects, and then tested with novel objects (from the same set of categories)

when the objects are grasped but not seen. During visual training, the per-

son uses his or her visual representation of each object to infer a modality-

independent representation characterizing the object’s intrinsic properties,

and applies the object’s category label to this representation. When subse-

quently grasping a novel object on a test trial, the person uses the object’s

haptic representation to infer a modality-independent representation of its

intrinsic properties. The novel object is judged to be a member of a category

if it has similar intrinsic properties to the training objects belonging to that

category.

Because modality-independent representations may underlie modality in-

variance, they would clearly be useful for the purposes of perception and

cognition. Importantly, recent behavioral and neurophysiological data indi-

cate their existence in biological organisms. For instance, behavioral and

neural evidence support the idea that object features extracted by vision

and by touch are integrated into modality-independent object representa-

tions that are accessible to memory and higher-level cognition (Easton, Srini-
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vas, & Greene, 1997; Reales & Ballesteros, 1999; Pascual-Leone & Hamil-

ton, 2001; Amedi et al., 2002; James et al., 2002; Norman, Norman, Clay-

ton, Lianekhammy, & Zielke, 2004; Amedi et al., 2005; Taylor, Moss, Sta-

matakis, & Tyler, 2006; Lacey, Peters, & Sathian, 2007; Ballesteros, Gonza-

lez, Mayas, Garcia-Rodriguez, & Reales, 2009; Lacey, Pappas, Kreps, Lee, &

Sathian, 2009; Lawson, 2009; Tal & Amedi, 2009). Based on brain imaging

(fMRI) data, Taylor et al. (2006) argued that posterior superior temporal sul-

cus (pSTS) extracts pre-semantic, crossmodal perceptual features, whereas

perirhinal cortex integrates these features into amodal conceptual represen-

tations. Tal and Amedi (2009), based on the results of an fMRI adaptation

study, claimed that a neural network (including occipital, parietal, and pre-

frontal regions) showed crossmodal repetition-suppression effects, indicating

that these regions are involved in visual-haptic representation.

Perhaps the most striking data comes from the work of Quiroga and

colleagues who analyzed intracranial recordings from human patients suffer-

ing from epilepsy (Quiroga, Kraskov, Koch, & Fried, 2009; Quiroga, 2012).

Based on these analyses, they hypothesized that the medial temporal lobe

contains “concept cells”, meaning neurons that are selective for particular

persons or objects regardless of how these persons or objects are sensed. For

instance, Quiroga et al. (2009) found a neuron that responded selectively

when a person viewed images of the television host Oprah Winfrey, viewed

her written name, or heard her spoken name. (To a lesser degree, the neu-

ron also responded to the comedian Whoopi Goldberg.) Another neuron
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responded selectively when a person saw images of the former Iraqi leader

Saddam Hussein, saw his name, or heard his name.

To fully understand modality-independent representations, Cognitive Sci-

ence and Neuroscience need to develop theories of how these representations

are acquired. Such theories would be significant because they would help

us understand the relationships between perceptual learning and modality

invariance. They would also be significant because they would be early “step-

ping stones” toward developing an understanding of the larger issue of how

sensory knowledge can be abstracted to form conceptual knowledge.

The plan of this paper is as follows. In the Results section, we start

by describing a general theoretical framework for how modality-independent

representations can be inferred from modality-specific sensory signals. To

evaluate the framework, we next describe an instantiation of the framework

in the form of a computational model, referred to as the Multisensory-Visual-

Haptic (MVH) model, whose goal is to acquire object shape representations

from visual and/or haptic signals. Simulation results show that the model

learns identical object representations when an object is viewed, grasped, or

both. That is, the model’s object percepts are modality invariant. We also

evaluate the MVH model by comparing its predictions with human experi-

mental data. We report the results of an experiment in which subjects rated

the similarity of pairs of objects, and show that the model provides a very

successful account of subjects’ ratings. In the Discussion section, we highlight

the contributions of our theoretical framework in general, and of the MVH
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model in particular, emphasizing its combination of symbolic and statisti-

cal approaches to cognitive modeling. Due to this combination, the model is

consistent with an emerging “probabilistic language of thought” methodology.

The Methods section provides modeling and experimental details.

Results

Theoretical framework

According to our framework, any system (biological or artificial) that ac-

quires modality-independent representations from sensory signals will include

the following three components: (1) a representational language for charac-

terizing modality-independent representations; (2) sensory-specific forward

models for mapping from modality-independent representations to sensory

signals; and (3) an inference algorithm for inverting sensory-specific for-

ward models—that is, an algorithm for using sensory signals in order to

infer modality-independent representations. These three components are dis-

cussed in turn.

(1) Representational language for characterizing modality-indepen-

dent representations: Although biological representations of modality-

specific sensory signals are not fully understood, it is believed that these

representations are constrained by the properties of the perceptual environ-

ment and the properties of the sensory apparatus. For example, the nature
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of biological visual representations depends on the nature of the visual envi-

ronment and the nature of the eye.

In contrast, constraints on the nature of modality-independent represen-

tations are not so easy to identify. One radical view, usually referred to as

embodied cognition (Barsalou, 1999), claims that there are no amodal rep-

resentations; all mental representations consist of sensory representations.

However, the majority view in Cognitive Science argues that people possess

modality-independent representations (e.g., representations of object shape

or representations of abstract concepts such as ‘love’ or ‘justice’), though

there is no consensus as to the best way to characterize these representations.

Common approaches include both statistical (e.g., distributed representa-

tions over latent variables) and symbolic (e.g., grammars, logic) formalisms.

These formalisms provide different representational languages for expressing

modality-independent thoughts and ideas, each with their own strengths and

weaknesses.

(2) Sensory-specific forward models: Modality-independent represen-

tations do not make direct contact with sensory signals. To bring them in

contact with sensory signals, our framework includes sensory-specific forward

models which map from modality-independent representations to sensory fea-

tures. For example, a vision-specific forward model might map a modality-

independent representation of an object’s shape to an image of the object

when viewed from a particular viewpoint. Similarly, a haptic-specific forward
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model might map the same modality-independent representation of an ob-

ject’s shape to a set of haptic features (e.g., hand shape as characterized by

the joint angles of a hand) that would be obtained when the object is grasped

at a particular orientation. We often find it useful to think of these sensory-

specific forward models as implementations of sensory imagery. For instance,

if a vision-specific forward model maps an object to its visual features, then

that is an implementation of visual imagery.

(3) Inference algorithm for inverting forward models: Sensory-specific

forward models map from modality-independent representations to sensory

signals. However, perception operates in the opposite direction—it maps

from sensory signals to modality-independent representations. Consequently,

perception needs to invert the sensory-specific forward models. This inversion

is accomplished by a perceptual inference algorithm.

From a larger perspective, our theoretical framework presents a concep-

tual analysis of the computational problem of multisensory perception. How

can we transfer knowledge (category, shape, meaning etc.) from one modal-

ity to another? Why are we more accurate when we perceive through more

modalities? How can we recognize a novel object crossmodally? Or how

can we recognize an object crossmodally from a novel view? We believe

our framework is successful in providing a unified account of the answers to

these questions and the underlying cognitive processes. Hence, we believe

our theoretical framework in itself constitutes a significant contribution to
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the understanding of multisensory perception.

Framework applied to visual-haptic object shape percep-
tion

To better understand and evaluate our framework, we apply it to the per-

ception of object shape via visual and haptic modalities. This application

results in the MVH computational model with the three components outlined

above.

We have had to make specific implementation choices to instantiate our

theoretical framework as a computational model. To us, these choices are

both uninteresting and interesting. On the one hand, the implementation

choices that we have made are not essential to the framework. Indeed,

other reasonable choices could have been made, thereby leading to alterna-

tive framework implementations. On the other hand, we believe that some of

our choices are important because they contribute to the study of cognitive

modeling. In particular, our computational model combines both symbolic

and statistical modeling approaches. Because of this combination, the model

can be regarded as falling within a recently emerging “probabilistic language

of thought” methodology. This contribution is described in the Discussion

section.

One of the implementation choices that we made was a choice as to which

stimuli we should focus on. Object shape perception via vision and/or hap-

tics is currently an unsolved problem when considered in its full generality.
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Consequently, we focus on a small subset of objects. We designed 16 novel

objects, where the set of object parts was based on a previously existing

set of objects known as “Fribbles”. Fribbles are complex, 3-D objects with

multiple parts and spatial relations among parts. They have been used in

studies of visual (Hayward & Williams, 2000; Tarr, 2003) and visual-haptic

(Yildirim & Jacobs, 2013) object perception. We used part-based objects

because many real-world objects (albeit not all) have a part-based structure.

In addition, theories of how people visually recognize part-based objects have

received much attention and played important roles in the field of Cognitive

Science (Marr & Nishihara, 1978; Hoffman & Richards, 1984; Biederman,

1987; Tversky, 1989; Saiki & Hummel, 1998).

Each object that we designed is comprised of five parts (the set of possible

parts is shown in Fig. 2.1). One part (labeled P0 in Fig. 2.1), a cylindrical

body, is common to all objects. The remaining four parts vary from object

to object, though they are always located at the same four locations in an

object. A particular object is specified by selecting one of two interchangeable

parts at each location (4 locations with 2 possible parts per location yields

16 objects). The complete set of objects is shown in Fig. 2.2.

Shape grammar as a language for characterizing object shape: In

the MVH model, object representations have three important properties.

The first property is that representations are modality-independent. That

is, they are not directly composed from modality-specific features, nor do
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P0 P1 P2

P3 P4 P5

P6 P7 P8

Figure 2.1: Possible object parts. Part P0 is common to all objects. Parts
P1-P8 vary from object to object.

Figure 2.2: Images of objects used in our simulations and experiment.
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they directly specify the values of these features.

The second property is that object representations characterize objects

in terms of their parts and the spatial relations among these parts. When

designing the model, our main focus was not on developing new insights

regarding how people represent object shape. Although this is an impor-

tant research area, many researchers in the Cognitive Science and Artificial

Intelligence communities already study this topic (Marr & Nishihara, 1978;

Ballard, 1981; Hoffman & Richards, 1984; Biederman, 1987; Kass, Witkin, &

Terzopoulos, 1988; Tversky, 1989; Logothetis, Pauls, & Poggio, 1995; Cutzu

& Edelman, 1996; Basri, Costa, Geiger, & Jacobs, 1998; Saiki & Hummel,

1998; D. Zhang & Lu, 2004; Feldman & Singh, 2006; Ling & Jacobs, 2007;

Op de Beeck, Wagemans, & Vogels, 2008; L. Zhu, Chen, & Yuille, 2009). The

scientific literature contains a wide variety of different approaches to object

shape representation. To date, there does not appear to be a consensus as

to which approach is best.

Instead of researching new ways to represent object shape, our goal is to

understand how modality-independent representations can be learned from

sensory data. Because the MVH model needs to represent object shape,

it necessarily resembles previously existing models that also represent ob-

ject shape. In particular, like previous models, our model represents objects

in terms of their parts and the spatial relations among these parts (Marr

& Nishihara, 1978; Hoffman & Richards, 1984; Biederman, 1987; Tversky,

1989; Saiki & Hummel, 1998). In principle, we are not strongly committed to



22

the hypothesis that people represent objects in a part-based manner. Shape

primitives other than parts could have been used in our simulations (as is

sometimes done with shape grammars in the Computer Vision and Computer

Graphics literatures; e.g., see Felzenszwalb (2013)), albeit at possibly greater

computational expense. To us, the use of part-based object representations in

our simulations seems reasonable because these representations have played

prominent roles and received considerable theoretical and empirical support

in the Cognitive Science literature, because the stimuli used in our simula-

tions and experiment were generated in a part-based manner, because the

analyses of our experimental data indicate that subjects were sensitive to

the part-based structure of the stimuli (see below), and because part-based

object representations led to computationally tractable simulations.

The final property is that object representations use a shape grammar to

characterize an object’s parts and the spatial relations among these parts (Fu,

1986; Bienenstock, Geman, & Potter, 1997; Tu, Chen, Yuille, & Zhu, 2005;

Amit & Trouve, 2007; Grenander & Miller, 2007; L. Zhu et al., 2009; Talton

et al., 2012; Felzenszwalb, 2013). Grammars are commonly used to character-

ize human language and language processing (Chomsky, 1965; Pinker, 1994),

and are also used in other areas of Cognitive Science (Goodman, Tenenbaum,

Feldman, & Griffiths, 2008; Kemp & Tenenbaum, 2008; Piantadosi, Tenen-

baum, & Goodman, 2012; T. D. Ullman, Goodman, & Tenenbaum, 2012;

Goodman, Tenenbaum, & Gerstenberg, 2015; Yildirim & Jacobs, 2015). In

addition, they are used to characterize objects and scenes in fields such as
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Computer Vision and Computer Graphics (Fu, 1986; Bienenstock et al., 1997;

Tu et al., 2005; Amit & Trouve, 2007; Grenander & Miller, 2007; L. Zhu et

al., 2009; Talton et al., 2012; Felzenszwalb, 2013).

The MVH model uses a shape grammar to specify the possible parts and

spatial relations among parts. Conventional shape grammars, like other types

of symbolic representations, can often be “brittle” when used in noisy envi-

ronments with significant uncertainty. We ameliorated this problem through

the use of a probabilistic approach. The details of the shape grammar are

described in the Methods section. For now, note that the grammar is an

instance of a probabilistic context-free grammar. Production rules charac-

terize the number of parts and the specific parts comprising an object. These

rules are supplemented with information characterizing the spatial relations

among parts.

Specifically, an object is generated using a particular sequence of pro-

duction rules from the grammar. This sequence is known as a derivation

which can be illustrated using a parse tree. To fully specify an object, an

object’s derivation or parse tree is supplemented with information specifying

the locations of the object’s parts. This specification occurs by adding extra

information to a parse tree, converting this tree to a spatial tree representing

object parts and their locations in 3-D space (see Methods section).

Vision-specific and haptic-specific forward models: Because object

representations are modality independent, they do not make direct contact
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with sensory signals. To evaluate and infer these representations, they need

to be brought in contact with these signals. For these purposes, the MVH

model uses its modality-independent representations to predict or “imagine”

sensory features from individual modalities. For example, given a modality-

independent representation of a particular object (i.e., a representation of

the object’s parts and the locations of these parts), the model can predict

what the object would look like (perhaps a form of visual imagery) or predict

the hand shape that would occur if the object were grasped (perhaps a form

of haptic imagery). A mapping from a modality-independent representation

to a sensory-specific representation can be carried out by a forward model,

a type of predictive model that is often used in the study of perception and

action (Jordan & Rumelhart, 1992; Wolpert & Kawato, 1998; Wolpert &

Flanagan, 2009). In Cognitive Science, forward models are often mental or

internal models. However, forward models exist in the external world too.

Our computer simulations made use of two forward models.

The vision-specific forward model was the Visualization Toolkit (VTK;

www.vtk.org), an open-source, freely available software system for 3-D com-

puter graphics, image processing, and visualization. We used VTK to visually

render objects. Given a modality-independent representation of an object,

VTK rendered the object from three orthogonal viewpoints. Images were

grayscale, with a size of 200 × 200 pixels. A visual input to the model was

a vector with 120,000 elements (3 images × 40,000 [200 × 200] pixels per

image).
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The haptic-specific forward model was a grasp simulator known as “GraspIt!”

(Miller & Allen, 2004). GraspIt! contains a simulator of a human hand.

When predicting the haptic features of an object, the input to GraspIt! was

the modality-independent representation for the object. Its output was a set

of 16 joint angles of the fingers of a simulated human hand obtained when

the simulated hand “grasped” the object. Grasps—or closings of the fin-

gers around an object—were performed using GraspIt!’s AutoGrasp function.

Fig. 2.3 shows the simulated hand grasping an object at three orientations.

In our simulations, each object was grasped 24 times, each time from a differ-

ent orientation (different orientations were generated by rotating an object 8

times [each time by 45◦] around the width, length, and depth axes). The

use of multiple grasps can be regarded as an approximation to active haptic

exploration. A haptic input to the model was a vector with 384 elements

(16 joint angles per grasp × 24 grasps). Our choice of using joint angles as

our haptic features follows a common practice in the field of postural hand

analysis (Santello, Flanders, & Soechting, 1998; Thakur, Bastian, & Hsiao,

2008).

Figure 2.3: GraspIt! simulates a human hand. Here the hand is grasping an
object at three different orientations.
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Bayes’ rule inverts sensory-specific forward models: Importantly,

the MVH model learns its object representations. The most influential mod-

els of object shape in the Cognitive Science literature, such as those of

Biederman (1987) and Marr and Nishihara (1978), used part-based shape

representations that were stipulated or hand-crafted by scientific investiga-

tors. In contrast, a goal of our model is to learn representations using a

probabilistic or Bayesian inference algorithm from visual and/or haptic sig-

nals. Using the terminology of Bayesian inference, the model computes a

posterior distribution over object representations based on a prior distribu-

tion over these representations (indicating which of the representations are

more or less likely before observing any sensory data) and a likelihood func-

tion (indicating which representations are more or less likely to give rise to

observed sensory data).

The model’s prior distribution is based on the prior distribution of the

Rational Rules model of Goodman et al. (2008). In brief (see the Methods

section for full details), the prior distribution is the product of two other

distributions, one providing a prior over parse trees and the other providing

a prior over spatial models. These priors are Occam’s Razors favoring the

use of “simple” parse trees and spatial models.

The likelihood function allows the model to use sensory data to evaluate

proposed object representations. Object representations which are highly

likely to give rise to perceived sensory data are more probable than object

representations which are less likely to give rise to these data (ignoring the
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prior distribution, for the moment). Sensory-specific forward models play a

crucial role in this evaluation. As mentioned above, object representations

are modality-independent, and thus do not make direct contact with per-

ceived visual or haptic features. Sensory-specific forward models are needed

to relate object representations to their sensory features.

Using Bayes’ rule, the MVH model combines the prior distribution and

the likelihood function to compute a posterior distribution over object repre-

sentations. Unfortunately, exact computation of the posterior distribution is

intractable. We, therefore, developed a Markov chain Monte Carlo (MCMC)

algorithm that discovers good approximations to the posterior. This algo-

rithm is described in the Methods section.

Simulation results: We used the model to infer modality-independent

representations of the 16 objects in Fig. 2.2. Object representations were in-

ferred under three stimulus conditions: a vision condition, a haptic condition,

and a multisensory (visual and haptic) condition. In all conditions, we in-

ferred the posterior distribution over modality-independent object represen-

tations. However, except where explicitly noted, the results reported below

are based on maximum a posteriori (MAP) estimates. Because distributions

are highly peaked around the MAP estimate, the results are essentially the

same when samples from each distribution are used.

The sole free parameter of the model is the variance of the likelihood

function. Intuitively, this parameter controls the relative weights of the prior
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and likelihood terms. By increasing the variance, thereby increasing the

relative weight of the prior, it is possible to constrain the model so that it

tends to prefer simple parse trees and spatial models. In contrast, as the

variance is decreased, the likelihood becomes more important, thus allowing

more complex trees and models to be assigned probability mass. For each

stimulus condition, we selected a value for the variance that provides a good

balance between prior and likelihood terms. We found that simulation results

are robust to the exact choice for the variance value. As long as the variance

is small enough to allow object representations which are complex enough,

the MVH model produced similar results.

Fig. 2.4 shows the results of a representative simulation in which the

model received visual input. This input consisted of three images of an ob-

ject from orthogonal viewpoints (Fig. 2.4a). The four modality-independent

object representations with the highest posterior probabilities are shown in

the top row of Fig. 2.4b. The bottom row shows visual renderings of these

object representations. The MAP estimate is on the left. Crucially, this es-

timate represents the object perfectly, successfully inferring both the object

parts and their spatial locations. Indeed, we find that the model’s MAP

estimate always represents an object perfectly for all the objects comprising

our stimulus set.

The other estimates in Fig. 2.4b (estimates with smaller probabilities

than the MAP estimate) exemplify the robustness of the model. Although

imperfect, these estimates are still sensible. When a part is missing from an



29

object representation, it is often part P8 which is small in size and, thus, has

only a small influence on the likelihood function. When a part is mismatched,

the model often substitutes part P7 for P8. This is unsurprising given that

parts P7 and P8 are visually (and haptically) similar.
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Figure 2.4: Results from a representative simulation of the MVH model.
(a) Visual input to the model. (b) Four estimates of modality-independent
object representations (parse trees augmented with spatial information) with
the highest posterior probabilities (top) and their images (bottom). The
MAP estimate is on the left. Each S (spatial) node denotes a position in 3D
space relative to its parent S node. P (part) nodes specify the part located
at its parent S node position. For example, in all the trees here P0 is located
at its ancestor S node’s position, which is the origin. The depth of a P node
corresponds roughly to its distance from the origin. Please refer to Methods
for more details.

Critically, the model shows perfect modality invariance. That is, it per-

forms identically in vision, haptic, and multisensory conditions, meaning the
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model produces the same MAP estimate of an object’s parts and spatial rela-

tions among these parts regardless of whether the object is viewed, grasped,

or both. For example, if the model is given the haptic features of the object

shown in Fig. 2.4a (instead of images of the object), its MAP estimate is

still the parse tree on the left of Fig. 2.4b. This result demonstrates that the

object representations acquired by the model are modality independent. For

this reason, we do not discuss separately the model’s performances in vision,

haptic, and multisensory conditions—these performances are identical.

Comparison with human data

Above, the motivations and merits of our computational model were de-

scribed based primarily on theoretical grounds. Here, we evaluate the MVH

model based on its ability to provide an account of human experimental

data. The experiment reported here is related to the experiments of Wall-

raven, Bülthoff, and colleagues who asked subjects to rate the similarity of

pairs of objects when objects were viewed, grasped, or both (Cooke, Kan-

nengiesser, Wallraven, & Bulthoff, 2006; Cooke et al., 2007; Gaissert et al.,

2010, 2011; Gaissert & Wallraven, 2012). However, our experiment also in-

cludes a crossmodal condition in which subjects rated object similarity when

one object was viewed and the other object was grasped.

In brief (experimental details are given in the Methods section), the stim-

uli were the 16 objects described above (Fig. 2.2). On each trial, a subject

observed two objects and judged their similarity on a scale of 1 (low similar-
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ity) to 7 (high similarity). The experiment included four conditions referred

to as the visual, haptic, crossmodal, and multisensory conditions. Different

groups of subjects were assigned to different conditions. In the visual con-

dition, subjects viewed images of two objects on each trial. In the haptic

condition, subjects grasped physical copies of two objects (fabricated using

3-D printing) on each trial. In the crossmodal condition, subjects viewed an

image of one object and grasped a second object on each trial. Finally, in

the multisensory condition, subjects viewed and grasped two objects on each

trial.

Experimental results: If people’s perceptions of object shape are modal-

ity invariant, then subjects in all conditions should perform the experimental

task in the same manner: On each trial, a subject represents the intrinsic

shape properties of the two observed objects in a modality-independent for-

mat, and then the two modality-independent object representations are com-

pared to generate a similarity judgment. The goal of the analyses of our ex-

perimental data is to evaluate whether subjects in fact based their similarity

judgments on modality-independent shape representations. We look at this

question by testing various predictions of the modality-invariance hypothe-

sis. First, if people’s perceptions of object shape are modality invariant, their

similarity judgments should be quite similar regardless of modality. Hence,

one would expect to see high correlations between similarity judgments not

only within conditions but also across conditions. We test this prediction
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with our first analysis below. A much stronger test of modality invariance is

possible if we can somehow find the shape representations subjects employed

in each condition. We can then simply compare these representations to

evaluate modality invariance. In our second set of analyses, we use additive

clustering and Multidimensional Scaling (MDS) to infer the perceptual space

for each condition and compare them.

First, we looked at the average of subjects’ similarity ratings for identical

objects; this provides us with a coarse measure of modality invariance as

well as a measure of objective accuracy. As expected from modality invari-

ant representations, these ratings were nearly 7 (Visual: 6.89±0.27, Haptic:

6.74±0.47, Crossmodal: 6.71±0.49, Multisensory: 6.82±0.35). To address

the question of modality invariance further, we proceeded as follows. First,

for each subject in our experiment, we formed a subject-level similarity ma-

trix by averaging the subject’s ratings for each pair of objects. Next, we

correlated a subject’s similarity matrix with the matrices for subjects in the

same experimental condition and in other conditions. The average correla-

tions are shown in Table 2.1. These correlations are large, ranging from 0.76

to 0.91 (explaining 58%-83% of the variance in subjects’ ratings). To test

if these values are significantly greater than zero, we transformed them us-

ing the Fisher z-transformation. A t-test using the transformed correlations

indicated that all correlations are significantly greater than zero (p < 0.001

in all cases). We are primarily concerned with whether subjects from differ-

ent conditions gave similar similarity ratings, and thus we closely examined
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the average correlations when subjects were in different conditions (for ex-

ample, cells Visual-Haptic or Visual-Crossmodal, but not Visual-Visual or

Haptic-Haptic, in the matrix in Table 2.1). Using t-tests, we asked if each

of these correlations is “large”, which we (arbitrarily, but not unreasonably)

defined as meaning that a correlation explains at least 50% of the variance

in subjects’ ratings. All of these correlations were found to be large by this

definition (p < 0.001 in all cases). Lastly, for each condition, we also formed

a condition-level similarity matrix by averaging the subject-level matrices for

the subjects belonging to that condition. As shown in Table 2.2, correlations

among these condition-level matrices were extremely high, with the smallest

correlation equal to 0.97 (explaining 94% of the variance in subjects’ ratings

across conditions). Taken as a whole, our correlational analyses strongly

suggest that subjects had similar notions of object similarity in all experi-

mental conditions. In other words, subjects’ similarity ratings were modality

invariant.

We further analyzed the experimental data using a Bayesian nonparamet-

ric additive clustering technique due to Navarro and Griffiths (2008). This

technique makes use of the Indian Buffet Process (Griffiths & Ghahramani,

2011), a latent feature model recently introduced in the Machine Learning

and Statistics literatures. In brief, the technique infers the latent or hid-

den features of a set of stimuli from their similarities. In our context, the

technique assumes that subjects’ similarity ratings are generated from hid-

den or latent binary object representations. Using Bayes’ rule, it inverts
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Visual Haptic Crossmodal Multisensory
Visual 0.91 ± 0.0341 0.83 ± 0.0855 0.86 ± 0.0729 0.89 ± 0.0572
Haptic 0.76 ± 0.1032 0.78 ± 0.1052 0.81 ± 0.0962

Crossmodal 0.8 ± 0.0968 0.83 ± 0.0866
Multisensory 0.86 ± 0.0651

Table 2.1: Average correlations within and across conditions among subjects’
similarity matrices.

For example, the value in the Visual-Visual cell was calculated by averaging
over correlations in subjects’ similarity ratings for each pair of subjects in the
visual condition (because there were 7 subjects in this condition, there were
42 = 7 × 6 such pairs). Similarly, the value in the Visual-Haptic cell was
calculated by averaging over correlations for each pair of subjects when one
subject was in the visual condition and the other subject was in the haptic
condition (because there were 7 subjects in each condition, there were 49 such
pairs).

Visual Haptic Crossmodal Multisensory
Visual 0.99 ± 0.0072 0.95 ± 0.0206 0.96 ± 0.0138 0.97 ± 0.0134
Haptic 0.97 ± 0.0241 0.94 ± 0.023 0.94 ± 0.0232

Crossmodal 0.97 ± 0.0199 0.96 ± 0.017
Multisensory 0.98 ± 0.0136

Table 2.2: Correlations based on condition-level similarity matrices formed by
averaging subject-level matrices for the subjects belonging to each condition.

Means and standard deviations are estimated with a bootstrap procedure with
1000 replications.

this generative process so that similarity ratings are used to infer probabil-

ity distributions over object representations. In other words, the input to

the technique is a matrix of similarity ratings. Its output is a probability

distribution over object representations where representations that are likely

to give rise to the similarity ratings are assigned higher probabilities. The

dimensionality of the binary object representations is not fixed. Rather, the

technique infers a probability distribution over this dimensionality.
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We applied the technique to each of the condition-level similarity matri-

ces. In all conditions, it revealed that the most probable dimensionality was

eight (i.e., similarity ratings in all conditions were most likely based on object

representations consisting of eight binary features). However, the technique

inferred two identical copies of each dimension, a potential problem noted by

Navarro and Griffiths (2008). Consequently, the technique actually inferred

four-dimensional object representations in all conditions. Interestingly, these

object representations can be interpreted as “part based” representations of

our experimental stimuli. Recall the structure of the experimental objects.

There are four locations on objects at which parts vary. At each location,

there are two interchangeable parts, only one of which is present in a given

object. As a matter of notation, label the first set of interchangeable parts

as {P1, P2}, the second set as {P3, P4}, and so on. An object can, there-

fore, be represented by four binary numbers. One number indicates which

part is present in the set {P1, P2}, another number indicates which part is

present in the set {P3, P4}, etcetera. We refer to this as a list-of-parts object

representation.

The Bayesian nonparametric additive clustering technique inferred the

same list-of-parts object representation as its MAP estimate when applied to

every condition-level similarity matrix. This is important because it suggests

that the same object representations underlied subjects’ similarity ratings in

visual, haptic, crossmodal, and multisensory experimental conditions. That

is, this analysis of our data suggests that subjects used modality-independent



36

representations, and thus our data are consistent with the hypothesis that

subjects’ object perceptions were modality invariant. Importantly, the result

did not have to come out this way. If the additive clustering technique

inferred different object representations when applied to different condition-

level similarity matrices, this outcome would have been inconsistent with the

hypothesis of modality invariance.

The fact that the additive clustering technique always inferred part-based

representations is also noteworthy. In hindsight, however, it might be unsur-

prising for subjects to have used part-based representations. Recall that our

stimuli were generated by combining distinct parts. It seems likely that sub-

jects would be sensitive to the structure of this generative process. Moreover,

previous theoretical and empirical studies have indicated that people often

use part-based object representations (Marr & Nishihara, 1978; Hoffman &

Richards, 1984; Biederman, 1987; Tversky, 1989; Saiki & Hummel, 1998).

Lastly, we analyzed subjects’ similarity ratings using non-metric multi-

dimensional scaling (MDS) with the Manhattan distance function. Given a

condition-level similarity matrix, MDS assigns locations in an abstract space

to objects such that similar objects are nearby and dissimilar objects are

far away (Shepard, 1962; Kruskal, 1964; Cox & Cox, 2000). To evaluate

the dimensionality of this abstract space, we computed the “stress” value, a

goodness-of-fit measure, for several different dimensionalities. In addition,

we also calculated the Bayesian Information Criterion (BIC) score for each

dimensionality. When using MDS, there are potential pitfalls when averaging
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similarity judgments of different subjects. If different subjects use different

abstract spaces, then averaging will lose this information. In addition, av-

erage similarity ratings can be fit well by MDS regardless of the nature of

individual subject’s ratings due to the increased symmetry of the average rat-

ings (Ashby, Maddox, & Lee, 1994). Lee and Pope (2003) developed a BIC

score that ameliorates these potential pitfalls. This score takes into account

both the fit and complexity of an MDS model. The results based on stress

values and BIC scores are shown in Figs. 2.5a and 2.5b, respectively. In both

cases, values typically reach a minimum (or nearly so) at four dimensions in

all experimental conditions. In Fig. 2.6, we plot the MDS space with four

dimensions for the crossmodal condition. The results for other conditions

are omitted since they are all qualitatively quite similar. In each panel of

Fig. 2.6, we plot two of the four dimensions against each other, i.e., project

the 4D space down to 2D. What is striking is the clear clustering in all pan-

els. We see four clusters of four objects where each dimension takes one of

two possible values. This is precisely the list-of-parts representation found

by the Bayesian nonparametric additive clustering technique.

In summary, our correlational analyses of the experimental data reveal

that subjects made similar similarity judgments in visual, haptic, crossmodal,

and multisensory conditions. This indicates that subjects’ judgments were

modality invariant. Our analyses using a Bayesian nonparametric additive

clustering technique and using multidimensional scaling indicate that sub-

jects formed the same set of modality-independent object representations in
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Figure 2.5: Results from MDS analysis. MDS (a) stress values and (b) BIC
scores as a function of the number of dimensions.
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all conditions.

Simulation results: Here we evaluate whether the MVH model provides a

good account of our experimental data. To conduct this evaluation, however,

the model must be supplemented with an object similarity metric. Such a

metric could potentially take several different forms. For example, object

similarity could be computed based on modality-independent features. Al-

ternatively, it could be based on modality-specific features such as visual or

haptic features.

Researchers studying how people represent space have made a surprising

discovery. Spatial locations can be represented in many different reference

frames, such as eye-centered, head-centered, body-centered, or limb-position

centered coordinate systems. Counterintuitively, people often transform rep-

resentations of spatial locations into a common reference frame, namely an

eye-centered reference frame, when planning and executing motor movements

(Cohen & Andersen, 2000, 2002; Pouget, Ducom, Torri, & Bavelier, 2002;

Schlicht & Schrater, 2007).

These studies raise an interesting issue: In what reference frame do peo-

ple judge object similarity? Do they judge object similarity in a modality-

independent feature space? Or do they judge object similarity in a sensory-

specific feature space such as a visual or haptic space? Here we address these

questions by augmenting the MVH model with different object similarity

functions.
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The hypothesis that people’s percepts are modality invariant predicts that

people judge object similarity based on the values of modality-independent

features. An alternative possibility is that people acquire modality-independent

object representations when objects are viewed and/or grasped, but then re-

represent objects in terms of visual features for the purpose of judging object

similarity. The mapping from modality-independent to visual features could

be achieved by a vision-specific forward model. A second alternative is that

people re-represent objects in terms of haptic features (via a haptic-specific

forward model) to judge object similarity. Because the MVH model includes

modality-independent representations along with vision-specific and haptic-

specific forward models, it can be used to evaluate these different possibilities.

In one set of simulations, the model was used to compute object similarity

in a modality-independent feature space. On each simulated trial, the model

computed modality-independent representations for two objects. Next, the

objects’ similarity was estimated using a tree-based similarity measure known

as “tree edit distance” (K. Zhang & Shasha, 1989). In brief, this measure has

a library of three tree-based operators: rename node, remove node, and insert

node. Given two modality-independent object representations—that is, two

spatial trees or MAP estimates of the shapes of two objects—this similarity

measure counts the number of operators in the shortest sequence of operators

that converts one representation to the other representation (or vice versa).

For similar representations, the representation for object A can be converted

to the representation for object B using a short operator sequence, and thus
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these representations have a small distance. For dissimilar representations,

a longer operator sequence is required to convert one object representation

to the other, and thus these representations have a large distance. In our

simulations, we first placed the object representations in a canonical form,

and then measured pairwise distances between objects using the tree edit

distance measure of K. Zhang and Shasha (1989).

In a second set of simulations, the model was used to compute object

similarity in a visual feature space. As above, the model was used to acquire

modality-independent representations for two objects on each simulated trial.

Next, the vision-specific forward model was used to map each object repre-

sentation to images of the represented object, thereby re-representing each

object from a modality-independent reference frame to a visual reference

frame. Given three images from orthogonal viewpoints of each object (see

Fig. 2.4a), the similarity of the two objects was estimated as the Euclidean

distance between the images of the objects based on their pixel values.

In a final set of simulations, the model was used to compute object simi-

larity in a haptic feature space. This set is identical to the set described in the

previous paragraph except that the haptic-specific forward model (GraspIt!)

was used to map each object representation to sets of a simulated hand’s joint

angles, thereby re-representing each object from a modality-independent ref-

erence frame to a haptic frame. Given sets of joint angles for each object, the

similarity of two objects was estimated as the Euclidean distance between

the haptic features of the objects based on their associated joint angles.
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Which set of simulations produced object similarity ratings matching the

ratings provided by our experimental subjects? For ease of explanation, we

refer to the model augmented with the modality-independent based, visual-

based, and haptic-based similarity functions as the MVH-M, MVH-V, and

MVH-H models, respectively. The results for these three models are shown

in Figs. 2.7, 2.8, and 2.9. In each figure, the four graphs correspond to the

visual, haptic, crossmodal, and multisensory conditions. The horizontal axis

of each graph shows subjects’ object similarity ratings (averaged across all

subjects, and linearly scaled to range from 0 to 1). The vertical axis shows

a model’s similarity ratings (linearly scaled to range from 0 to 1). Each

graph contains 136 points, one point for each possible pair of objects. The

correlation (denoted R) between subject and model ratings is reported in the

top-left corner of each graph.

A comparison of these figures reveals that the object similarity ratings of

the MVH-M model provide an excellent quantitative fit to subjects’ ratings.

Indeed, the correlation R ranges from 0.975 to 0.987 across the different

experimental conditions (explaining 95%-97% of the variance in ratings). In

other words, the MVH-M model provides a (nearly) perfect account of our

experimental data. The MVH-V model provides a reasonably good fit to

subjects’ data, though this fit is not as good as the fit provided by the MVH-

M model. Based on a two-tailed t-test using the Fisher z-transformation,

correlations for the MVH-M model are always greater than the corresponding

correlations for the MVH-V model (p < 0.05). In addition, correlations for
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Figure 2.7: Results for the MVH-M model (this model computes object simi-
larity in a modality-independent feature space). The four graphs correspond
to the visual (top left), haptic (top right), crossmodal (bottom left), and
multisensory (bottom right) experimental conditions. The horizontal axis
of each graph shows subjects’ object similarity ratings (averaged across all
subjects, and linearly scaled to range from 0 to 1). The vertical axis shows
the model’s similarity ratings (linearly scaled to range from 0 to 1). The cor-
relation (denoted R) between subject and model ratings is reported in the
top-left corner of each graph. Note that MVH-M model’s similarity ratings
take only a finite number of different values since parse trees are discrete
structures, and therefore tree-edit distance returns only integer values.
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Figure 2.8: Results for the MVH-V model (this model computes object sim-
ilarity in a visual feature space). The format of this figure is identical to the
format of Fig. 2.7.
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Figure 2.9: Results for the MVH-H model (this model computes object sim-
ilarity in a haptic feature space). The format of this figure is identical to the
format of Fig. 2.7.
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the MVH-M model and the MVH-V model are always greater than those of

the MVH-H model. That is, the MVH-M model performs best, followed by

the MVH-V model, and then the MVH-H model.

In summary, we have compared the performances of three models. All

models represent objects in a modality-independent manner. However, the

models differ in the space in which they calculate object similarity. One

model calculates similarity using modality-independent features (MVH-M),

another model maps modality-independent features to visual features and

calculates similarity on the basis of these visual features (MVH-V), and a

final model maps modality-independent features to haptic features and cal-

culates similarity on the basis of these haptic features (MVH-H). Our results

show that the MVH-M model’s similarity ratings provide the best quan-

titative fit to subjects’ ratings. Consequently, we hypothesize that subjects

computed object similarity in a modality-independent feature space. That is,

subjects acquired modality-independent object shape representations based

on visual signals, haptic signals, or both, and then compared two objects’

shape representations in order to judge their similarity.

Discussion

This paper has studied the problem of learning modality-independent, con-

ceptual representations from modality-specific sensory signals. We hypothe-

sized that any system that can accomplish this feat will include three compo-
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nents: a representational language for characterizing modality-independent

representations, a set of sensory-specific forward models for mapping from

modality-independent representations to sensory signals, and an inference

algorithm for inverting forward models (i.e., an algorithm for using sensory

signals to infer modality-independent representations).

To evaluate our theoretical framework, we instantiated it in the form of

a computational model that learns object shape representations from visual

and/or haptic signals. The model uses a probabilistic context-free grammar

to characterize modality-independent representations of object shape, uses a

computer graphics toolkit (VTK) and a human hand simulator (GraspIt!) to

map from object representations to visual and haptic features, respectively,

and uses a Bayesian inference algorithm to infer modality-independent ob-

ject representations from visual and/or haptic signals. Simulation results

show that the model infers identical object representations when an object is

viewed, grasped, or both. That is, the model’s percepts are modality invari-

ant. It is worth pointing out that the particular implementational choices we

have made in our model are in some sense arbitrary; any model that instan-

tiates our framework will be able to capture modality invariance. Therefore,

from this perspective, our particular model in this work should be taken as

one concrete example of how modality independent representations can be

acquired and used.

Our work in this paper focused on showing how our framework can cap-

ture one aspect of multisensory perception, i.e., modality invariance. We
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take this as an encouraging first step in applying our framework to multi-

sensory perception more generally. We believe other aspects of multisensory

perception (such as cue combination, crossmodal transfer of knowledge, and

crossmodal recognition) can be easily understood and treated in our frame-

work.

The paper also reported the results of an experiment in which different

subjects rated the similarity of pairs of objects in different sensory conditions,

and showed that the model provides a very good account of subjects’ ratings.

Our experimental results suggest that people extract modality independent

shape representations from sensory input and base their judgments of similar-

ity on such representations. The success of our model in accounting for these

results are important from two perspectives. First, from a larger perspec-

tive, it is significant as a validation of our theoretical framework. Second, it

constitutes an important contribution to cognitive modeling, particularly an

emerging probabilistic language-of-thought approach, by showing how sym-

bolic and statistical approaches can be combined in order to understand

aspects of human perception.

Related research

Our theoretical framework is closely related to the long standing vision-as-

inference (Kersten & Yuille, 2003) approach to visual perception. In this

approach, the computational problem of visual perception is formalized as

the inversion of a generative process; this generative process specifies how the
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causes in the world, e.g., objects, give rise to 2D images on the retina. Then,

the purpose of the visual system is to invert this generative model to infer

the most likely causes, i.e., the explanation, for the observed sensory data.

This approach, also called analysis-by-synthesis, has featured prominently

both in cognitive science (Kersten, Mamassian, & Yuille, 2004; Yuille &

Kersten, 2006) and computer vision (S.-C. Zhu & Mumford, 2006; Kulkarni,

Mansinghka, Kohli, & Tenenbaum, 2014; Kulkarni, Yildirim, Kohli, Freiwald,

& Tenenbaum, 2014). Our work here can be seen as the application of this

approach to multisensory perception.

Previous research has instantiated our general theoretical framework in

other ways. For example, Yildirim and Jacobs (2012) developed a latent vari-

able model of multisensory perception. In this model, modality-independent

representations are distributed representations over binary latent variables.

Sensory-specific forward models map the modality-independent representa-

tions to sensory (e.g., visual, auditory, haptic) features. The acquisition

of modality-independent representations takes place when a Bayesian infer-

ence algorithm (the Indian Buffet Process (Griffiths & Ghahramani, 2011))

uses the sensory features to infer these representations. Advantages of this

model include the fact that the dimensionality of the modality-independent

representations adapts based on the complexity of the training data set, the

model learns its sensory-specific forward models, and the model shows modal-

ity invariance. Disadvantages include the fact that the inferred modality-

independent representations (distributed representations over latent vari-
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ables) are difficult to interpret, and the fact that the sensory-specific forward

models are restricted to being linear. Perhaps its biggest disadvantage is

that it requires a well-chosen set of sensory features in order to perform well

on large-scale problems. In the absence of good sensory features, it scales

poorly, mostly due to its linear sensory-specific forward models and complex

inference algorithm.

As a second example, Yildirim and Jacobs (2013) described a model of

visual-haptic object shape perception that is a direct precursor to the MVH

model described in this paper. Perhaps its biggest difference with the model

presented here is that it represents parts as generalized cylinders, and parts

connect to each other using a large number of “docking locations”. This

strategy for representing object shape provides enormous flexibility, but this

flexibility comes at a price. Inference using this model is severely undercon-

strained. Consequently, the investigators designed a customized (i.e., ad hoc)

Bayesian inference algorithm. Despite the use of this algorithm, inference is

computationally expensive. That is, like the latent variable model described

in the previous paragraph, the model of Yildirim and Jacobs (2013) scales

poorly.

Probabilistic language-of-thought

We believe that the MVH model described in this paper has significant the-

oretical and practical advantages over alternatives. These arise primarily

due to its use of a highly structured implementation of a representational
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language for characterizing modality-independent representations. In partic-

ular, the model combines symbolic and statistical approaches to specify a

probabilistic context-free object shape grammar. Due to this shape gram-

mar, the model is able to use a principled inference algorithm that has previ-

ously been applied to probabilistic grammars in other domains. We find that

inference in the model is often computationally tractable. We are reason-

ably optimistic that the model (or, rather, appropriately extended versions

of the model) will scale well to larger-scale problems. Although important

challenges obviously remain, our optimism stems from the fact that shape

grammars (much more complex than the one reported here) are regularly

used in the Computer Vision and Computer Graphics literatures to address

large-scale problems. In addition, due to its principled approach, the model

should be easy to extend in the future because relationships between the

model and other models in the Cognitive Science and Artificial Intelligence

literatures using grammars, such as models of language, are transparent. As

a consequence, lessons learned from other models will be easy to borrow for

the purpose of developing improved versions of the model described here.

In Cognitive Science, there are many frameworks for cognitive modeling.

For example, one school of thought favors symbolic approaches, such as ap-

proaches based on grammars, production rules, or logic. An advantage of

symbolic approaches is their rich representational expressiveness—they can

often characterize a wide variety of entities in a compact and efficient man-

ner. A disadvantage of these approaches is that they are often “brittle” when
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used in noisy or uncertain environments. An alternative school of thought

favors statistical approaches, such as approaches based on neural networks or

Bayesian inference. An advantage of statistical approaches is their ability to

learn and adapt, and their robustness to noise and uncertainty. Their main

disadvantage is that they often require highly structured prior distributions

or likelihood functions to work well (Tenenbaum et al., 2011). Advocates

of symbolic and statistical schools of thought have often engaged in heated

debates (McClelland & Patterson, 2002b, 2002a; Pinker & Ullman, 2002b,

2002a). Unfortunately, these debates have not led to a resolution as to which

approach is best.

A recently emerging viewpoint in the Cognitive Science literature is that

both symbolic and statistical approaches have important merits, and thus

it may be best to pursue a hybrid framework taking advantage of each ap-

proach’s best aspects (Goodman et al., 2008; Kemp & Tenenbaum, 2008;

Piantadosi et al., 2012; T. D. Ullman et al., 2012). This viewpoint is referred

to here as a “probabilistic language of thought” approach because it applies

probabilistic inference to a representation consisting of symbolic primitives

and combinatorial rules (Fodor, 1975). To date, the probabilistic language-

of-thought approach has been used almost exclusively in domains that are

typically modeled using symbolic methods, such as human language and high-

level cognition. A significant contribution of the research presented here is

that it develops and applies this approach in the domain of perception, an

area whose study is dominated by statistical techniques.
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Future research

We foresee at least three areas of future research. First, the framework de-

scribed here sheds light on modality invariance. Future work will need to

study whether this framework also sheds light on other aspects of multisen-

sory perception and cognition. For example, can the framework be used to

understand why our percepts based on two modalities are often more accu-

rate than our percepts based on a single modality, why training with two

modalities is often superior to training with a single modality (even when

testing is conducted in unisensory conditions), or why crossmodal transfer of

knowledge is often, but not always, successful? Future work will also need

to study the applicability of the framework to other sensory domains, such

as visual and auditory or auditory and haptic environments. Future work

will also need to consider how our framework can be extended to study the

acquisition of other types of conceptual knowledge from sensory signals.

Second, future research will need to study the role of forward models in

perception and cognition. For example, we have speculated that sensory-

specific forward models may be ways of implementing sensory imagery, and

thus our framework predicts a role for imagery in multisensory perception.

Behavioral, neurophysiological, and computational studies are needed to bet-

ter understand and evaluate this hypothesis. From a technological perspec-

tive, it is advantageous that we live in a “golden age” of forward models.

New and improved forward models are frequently being reported in the sci-

entific literature and made available on the world wide web (e.g., physics
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engines providing approximate simulations of physical systems such as rigid

body dynamics or fluid dynamics). These forward models will allow cog-

nitive scientists to study human perception, cognition, and action in much

more realistic ways than has previously been possible.

Finally, cognitive scientists often make a distinction between rational

models and process models (Anderson, 1990). Rational models (or compu-

tational theories (Marr, 1982)) are models of optimal or normative behavior,

characterizing the problems that need to be solved in order to generate the

behavior as well as their optimal solutions. In contrast, process models (or

models at the “representation and algorithm” level of analysis (Marr, 1982))

are models of people’s behaviors, characterizing the mental representations

and operations that people use when generating their behavior. Because the

MVH model’s inference algorithm is optimal according to Bayesian crite-

ria, and because this algorithm is not psychologically plausible, the model

should be regarded as a rational model, not as a process model. Nonetheless,

we believe that there are benefits to regarding the MVH model as a ratio-

nal/process hybrid. Like rational models, the MVH model is based on opti-

mality considerations. However, like process models, it uses psychologically

plausible representations and operations (e.g., grammars, forward models).

For readers solely interested in process models, we claim that the MVH

model is a good starting point. As pointed out by others (Sanborn, Griffiths,

& Navarro, 2010; Griffiths, Vul, & Sanborn, 2012), the MCMC inference al-

gorithm used by the MVH model can be replaced by approximate inference
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algorithms (known as particle filter or sequential Monte Carlo algorithms)

that are psychologically plausible. Doing so would lead to a so-called “ra-

tional process model”, a type of model that is psychologically plausible and

also possesses many of the advantages of rational models. Future work will

need to study the benefits of extending our framework through the use of

psychologically plausible and approximately optimal inference algorithms to

create rational process models of human perception.

Methods

Ethics statement

The experiments were approved by the Research Subjects Review Board of

the University of Rochester. All subjects gave informed consent.

Multisensory-Visual-Haptic (MVH) model

Shape grammar: The production rules of the MVH model’s shape gram-

mar are shown in Fig. 2.10. The grammar is an instance of a probabilistic

context-free grammar. However, probabilities for each production rule are

not shown in Fig. 2.10 because our statistical inference procedure marginal-

izes over the space of all probability assignments (see below). Production

rules characterize the number of parts and the specific parts comprising an

object. The rules contain two non-terminal symbols, S and P. Non-terminal
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P is always replaced by a terminal representing a specific object part. Non-

terminal S is used for representing the number of parts in an object. Produc-

tion rules are supplemented with additional information characterizing the

spatial relations among parts.

S → S | SS | SSS | SSSS | P | PS | PSS | PSSS
P → P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8

Figure 2.10: Production rules of the shape grammar in Backus-Naur form. S
denotes spatial nodes, and P refer to part nodes. S is also the start symbol
of the grammar. P1, P2, etc. are the object parts as seen in Fig. 2.1.

An object is generated using a particular sequence of production rules

from the grammar. This sequence is known as a derivation which can be

illustrated using a parse tree. To represent the spatial relations among ob-

ject parts, a parse tree is extended to a spatial tree. Before describing this

extension, it will be useful to think about how 3-D space can be given a

multi-resolution representation. At the coarsest resolution in this represen-

tation, a “voxel” corresponds to the entire space. The center location of this

voxel is the origin of the space, denoted (0, 0, 0). At a finer resolution, this

voxel is divided into 27 equal sized subvoxels arranged to form a 3 × 3 × 3

grid. Using a Cartesian coordinate system with axes labeled x, y, and z, a

coordinate of a subvoxel’s location along an axis is either -1, 0, or 1. For

example, traversing the z-axis would reveal subvoxels located at (-1, -1, -1),

(-1, -1, 0), and (-1, -1, 1). This process can be repeated. For instance, the

subvoxel at (-1, -1, -1) can be divided into 27 subsubvoxels. The coordinates
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of subsubvoxels would also be either -1, 0, or 1. Note that the location of a

subsubvoxel is relative to the location of its parent subvoxel which, in turn,

is relative to the location of its parent voxel.

The addition of multi-resolution spatial information to a parse tree con-

verts this tree to a spatial tree. This process is illustrated in Fig. 2.11. Con-

sider the object shown in Fig. 2.11a and the spatial tree for the derivation of

this object shown in Fig. 2.11b. The root S node is associated with a voxel

centered at the origin (0, 0, 0) of the 3-D space. This node is expanded using

the rule S → PSSS, and locations are assigned to the subvoxels associated

with the S nodes [in the figure, these locations are (0, -1, 0), (1, 0, 0), and (-1,

1, 0), respectively]. The P node is replaced with terminal P0 representing

the cylindrical body (see Fig. 2.1). This part is placed at the location of its

grandparent S node. The two leftmost S nodes in the second level of the tree

are eventually replaced with terminals P1 and P3, respectively. These parts

are placed at the locations of their grandparent S nodes. The rightmost S

node at the second level is expanded using the production S → PS, and a

location is assigned to the S node [(0, 1, 0)]. The P node is replaced with

terminal P5. The final S node is eventually replaced with terminal P7.

The multi-resolution representation of 3-D space, and the placement of

parts in this space is illustrated in Fig. 2.11c. Two facts about spatial trees

are evident from this figure. First, smaller-sized voxels are reached as one

moves deeper in a tree, enabling the model to make finer-grained assignments

of locations to object parts. Second, with the exception of the root S node,
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(a) (b)

S(0,0,0)

P

P0

S(0,-1,0)

P

P1

S(1,0,0)

P

P3

S(-1,1,0)

P

P5

S(0,1,0)

P

P7

(c)

Figure 2.11: Illustration of the multi-resolution representation of 3-D space.
(a) Image of an object. (b) Spatial tree representing the parts and spatial
relations among parts for the object in (a). (c) Illustration of how the spatial
tree uses a multi-resolution representation to represent the locations of object
parts.
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an S node is never associated with a voxel located at (0, 0, 0) because this

would create a situation in which two parts are assigned the same location.

There are several properties of the model’s shape grammar and spatial

trees that were chosen for convenience: (i) The maximum branching factor

of the shape grammar is four; (ii) The creation of spatial trees through the

addition of spatial information to parse trees is not strictly necessary. An

equivalent representation could be achieved by a more complicated grammar

with productions for all possible voxel coordinate assignments to child S

nodes; and (iii) Without loss of generality, the set of possible object parts

was chosen for convenience. In other situations, other sets could be selected

(indeed, one could imagine a system that uses a segmentation algorithm to

learn good sets). In addition, the fact that object parts are at fixed scales and

orientations is not strictly necessary. More complicated spatial trees could

allow for scaling and rotation of parts. Our point here is that the probabilistic

shape grammar approach is general and powerful, though the full generality

and power of this approach is not needed for our current purposes. Readers

interested in how shape grammars can be used to characterize objects and

scenes in more realistic settings should consult the Computer Vision and

Computer Graphics literatures (Fu, 1986; Bienenstock et al., 1997; Tu et al.,

2005; Amit & Trouve, 2007; Grenander & Miller, 2007; L. Zhu et al., 2009;

Talton et al., 2012; Felzenszwalb, 2013).



60

Prior distribution over object representations: An object representa-

tion consists of two components, a parse tree, denoted T , and a spatial model,

denoted S. The prior probability for an object representation is defined as:

P (T ,S|G) = P (T |G)P (S|T ) (2.1)

where G denotes the shape grammar.

Due to the nature of our grammar, an object has a unique derivation, and

thus a unique parse tree. Recall that a derivation is a sequence of productions

in the shape grammar that ends when all non-terminals are replaced with

terminals. At each step of a derivation, a choice is made among the produc-

tions which could be used to expand a non-terminal. Because a probability

is assigned to each production choice in a derivation, the probability of the

complete derivation is the product of the probabilities for these choices. That

is, the probability of a parse tree is:

P (T |G, ρ) =
∏
n∈Nnt

P (n→ ch(n)|G, ρ) (2.2)

where Nnt is the set of non-terminal nodes in the tree, ch(n) is the set

of node n’s children nodes, and P (n → ch(n)|G, ρ) is the probability for

production rule n→ ch(n). In this equation, ρ denotes the set of probability

assignments to production rules. Allowing for uncertainty in these production
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probabilities, we integrate over ρ:

P (T |G) =

∫
P (T |G, ρ)P (ρ|G)dρ. (2.3)

Because there is no reason to prefer any specific set of production probabili-

ties, we assume that P (ρ|G) is a uniform distribution. With this assumption,

the integral has a Multinomial-Dirichlet form, and thus can be solved ana-

lytically:

P (T |G) =
∏
s∈Gnt

β(C(T , s) + 1)

β(1)
. (2.4)

Here, Gnt is the set of non-terminal symbols in grammar G, β(·) is the multi-

nomial beta function, 1 is a vector of ones, and C(T , s) is a vector of counts

of the productions for non-terminal s in parse tree T (the count of a rule

increments each time the rule is used).

An advantage of this distribution over parse trees is that it favors “simple”

trees, meaning trees corresponding to short derivations. (To see this, note

that Equation 2.2 multiplies probabilities [numbers less than one]. The num-

ber of terms that are multiplied increases with the length of the derivation.)

Consequently, it can be regarded as a type of Occam’s Razor.

In addition to the probability of parse tree T , the calculation of the prior

probability of an object representation also requires the probability of spatial

model S (Equation 2.1). Recall that model S contains the voxel coordinates

for each S node in a parse tree. Let V denote the set of possible voxel

coordinates, a set with 26 elements (the 3 × 3 × 3 grid yields 27 subvoxels
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but the subvoxel centered at (0, 0, 0) is not a valid spatial assignment).

Using NS to denote the set of S nodes in tree T , and assuming that all voxel

coordinates are equally likely, the probability of model S is:

P (S|T ) =
∏
n∈NS

1

|V| =
1

|V||NS |
. (2.5)

As above, this distribution favors spatial models associated with small parse

trees, and thus is a type of Occam’s Razor.

Likelihood function: Recall that an object representation consists of a

parse tree T and a spatial model S. Let D denote actual sensory data

perceived by an observer, either visual features, haptic features, or both. Let

F (T ,S) denote predicted sensory features, predicted by the visual-specific

forward model (VTK), the haptic-specific forward model (GraspIt!), or both.

To define the likelihood function, we assume that perceived sensory data D

is equal to predicted sensory features F (T ,S) plus random noise distributed

according to a Gaussian distribution:

P (D|T ,S) ∝ exp

(
−||D − F (T ,S)||22

σ2

)
(2.6)

where σ2 is a variance parameter.

MCMC algorithm: Using Bayes’ rule, the MVH model combines the

prior distribution and the likelihood function to compute a posterior dis-
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tribution over object representations:

P (T ,S|D,G) ∝ P (D|T ,S)P (S|T )P (T |G) (2.7)

where the three terms on the right-hand side are given by Equations 2.6, 2.5,

and 2.4, respectively. Unfortunately, exact computation of the posterior dis-

tribution is intractable. We, therefore, developed a Markov chain Monte

Carlo (MCMC) algorithm that discovers good approximations to the poste-

rior.

MCMC is a family of methods for sampling from a desired probability

distribution by constructing a Markov chain that has the desired distribution

as its stationary distribution. A common MCMC method is the Metropolis-

Hastings (MH) algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &

Teller, 1953; Hastings, 1970). This algorithm produces a sequence of samples.

At each iteration, the algorithm picks a candidate for the next sample value

based on the current sample value. With some probability, the candidate is

accepted meaning that the candidate value is used in the next iteration or

rejected meaning this value is discarded and the current value is reused in

the next iteration.

In the context of our simulations, a value is a multisensory object repre-

sentation—that is, a parse tree T and a spatial model S. At each iteration,

our algorithm proposes a new representation, denoted (T ′,S ′), based on the

current representation (T ,S) with probability given by proposal distribution



64

q(T ′,S ′|T ,S). The new representation is accepted with a probability based

on acceptance function A(T ′,S ′; T ,S).

We used two different proposal distributions in our simulations, one on

even-numbered iterations and the other on odd-numbered iterations (Brooks,

1998; Tierney, 1994). The subtree-regeneration proposal distribution was

originally developed by Goodman et al. (2008). When using this proposal

distribution, a non-terminal node is randomly selected from parse tree T , all

its descendants are removed, and new descendants are generated according to

the rules of the shape grammar. Nodes removed from the parse tree are also

removed from the spatial model, and random voxel coordinates are sampled

for newly added nodes. The new representation is accepted with probability

equal to the minimum of 1 and the value of an acceptance function:

A(T ′,S ′; T ,S) =
P (D|T ′,S ′)
P (D|T ,S)

P (T ′|G)

P (T |G)

|Nnt|
|N ′nt|

P (T |G, ρ)

|P (T ′|G, ρ)
(2.8)

where Nnt and N ′nt are the sets of all non-terminals in tree T and T ′, respec-

tively.

Sole use of the subtree-regeneration proposal did not produce an efficient

MCMC algorithm for our problem. This is mainly due to the fact that the

algorithm sometimes proposes a new object representation which is very dif-

ferent from the current representation, thereby losing the desirable aspects

of the current representation. Consider a scenario in which the current rep-

resentation is partially correct, such as the parse tree in Fig. 2.12a. Based on
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this tree, it is difficult to propose the more correct tree in Fig. 2.12b without

losing the desirable aspects of the current tree. To do so, the algorithm would

have to choose the root node, thereby deleting nearly all of the current tree,

and then generate the proposal tree nearly from scratch.

(a)

S

P

P0

S

P

P1

(b)

S

P

P0

S

P

P1

S

P

P3

Figure 2.12: Parse trees for illustrating a difficulty with using the subtree-
regeneration proposal. (a) Partially correct tree for a hypothetical example.
(b) The “true” tree for the example. Note that it is impossible to propose the
tree in (b) from the tree in (a) with a subtree-regeneration proposal without
deleting and regenerating all the nodes.

This observation led us to design the add/remove-part proposal. This

proposal adds or removes object parts to a representation making it possible,

for example, to propose the tree in Fig. 2.12b based on the tree in Fig. 2.12a,

or vice versa. The proposal starts by randomly choosing whether to add or

remove an object part. If adding a part, it draws a random part by choosing

a terminal symbol from the grammar. Then it chooses an S node that has

less than four children and adds a new S node as a child to the chosen S

node. Finally, it expands the child S node to a P node and the P node to

the chosen part. If removing a part, an S node that has a P node as its only
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child is chosen. This node and its descendants are removed. However, the

proposal never chooses the root S node or an S node that is the only child

of its parent as these will result in ungrammatical trees. The spatial model

is updated accordingly. If a part is added, a random voxel coordinate is

sampled for the newly added S node. If a part is removed, the corresponding

S node (and its voxel coordinate) is removed. Assuming that representation

(T ′,S ′) is proposed by adding a new part to (T ,S), the new representation

is accepted with probability equal to the minimum of 1 and the value of the

acceptance function:

A(T ′,S ′; T ,S) =
P (D|T ′,S ′)
P (D|T ,S)

P (T ′|G)

P (T |G)

|A|
|R′| |Gt| (2.9)

where R′ is the set of S nodes in tree T ′ that can be removed, A is the set of

S nodes in tree T to which a new child S node can be added, and Gt is the

set of terminal symbols in the grammar. Similarly, the acceptance function

when removing a part is:

A(T ′,S ′; T ,S) =
P (D|T ′,S ′)
P (D|T ,S)

P (T ′|G)

P (T |G)

|R|
|A′||Gt|

(2.10)

where R is the set of S nodes in tree T that can be removed, A′ is the set

of S nodes in tree T ′ to which a new child S node can be added.

It is easy to show that our algorithm is a valid Metropolis-Hastings sam-

pler, meaning that it has the posterior distribution over multisensory object

representations as its stationary distribution. Derivations for the acceptance
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functions for the subtree-regeneration and add/remove-part proposals are

straightforward. Readers interested in these topics should contact the first

author.

In our simulations, each MCMC chain was run for 10,000 iterations. Sam-

ples from the first 6,000 iterations were discarded as “burn-in”.

Experimental Details

Stimuli: The experiment used the 16 objects in Fig. 2.2. Visual stimuli

consisted of images of objects rendered from a canonical (three-quarter) view-

point so that an object’s parts and spatial relations among parts are clearly

visible (Fig. 2.2). Stimuli were presented on a 19-inch CRT computer mon-

itor. Subjects sat approximately 55 cm from the monitor. When displayed

on the monitor, visual stimuli spanned about 20 degrees in the horizontal

dimension and 15 degrees in the vertical dimension. Visual displays were

controlled using the PsychoPy software package (Peirce, 2007).

Subjects received haptic inputs when they touched physical copies of the

objects fabricated using a 3-D printing process (Fig. 2.2). Physical objects

were approximately 11.5 cm long, 6.0 cm wide, and 7.5 cm high. Subjects

were instructed to freely and bimanually explore physical objects.

Procedure: On each experimental trial, a subject observed two objects and

judged their similarity on a scale of 1 (low similarity) to 7 (high similarity).

Within a block of 136 trials, each object was paired both with itself (16 trials)
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and with the other objects (each object could be paired with 15 other objects;

ignoring order of object presentation [which was randomized], this results in

120 trials). Pairs were presented in random order. Subjects performed 4

blocks of trials.

The experiment included four conditions referred to as the visual, haptic,

crossmodal, and multisensory conditions. Different groups of subjects were

assigned to different conditions. We regard the crossmodal condition as the

key experimental condition because it is the condition that directly evalu-

ates the modality invariance of subjects’ percepts. The visual, haptic, and

multisensory conditions are control conditions in the sense that data from

these conditions are of interest primarily because they allow us to better

understand results from the crossmodal condition.

In the visual condition, subjects saw an image of one object followed by

an image of a second object. Images were displayed for 3.5 seconds.

In the haptic condition, physical objects were placed in a compartment

under the computer monitor. The end of the compartment closest to a sub-

ject was covered with a black curtain. A subject could reach under the

curtain to haptically explore an object. However, a subject could not view

an object. Messages on the computer monitor and auditory signals indicated

to a subject when she or he could pick up and drop objects. On each trial, an

experimenter first placed one object in the compartment. The subject then

haptically explored this object. The experimenter removed the first object

and placed a second object in the compartment. The subject explored this
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second object. Each object was available for haptic exploration for 7 sec-

onds. As is common in the scientific literature on visual-haptic perception,

the haptic input in the haptic experimental condition was available for longer

than the visual input in the visual condition (Freides, 1974; Newell & Ernst,

2001; Lacey et al., 2007; Gaissert et al., 2011).

In the crossmodal condition, objects in a pair were presented in differ-

ent sensory modalities. For one subgroup of three subjects, the first object

was presented visually and the second object was presented haptically. For

another subgroup of four subjects, this order was reversed. We checked for

a difference in ratings between the two subgroups. A two-tailed Welch’s t-

test (used when two samples have possibly unequal variances) did not find

a significant effect of the order of the modalities in which objects were pre-

sented (t = 0.087, p = 0.935). We, therefore, grouped the data from these

subgroups.

In the multisensory condition, both objects were presented both visually

and haptically. During the 7 seconds in which an object could be touched,

the visual image of the object was displayed for the final 3.5 seconds.

Visual and crossmodal conditions were run over two one-hour sessions on

two different days, each session comprising two blocks of trials. For haptic

and multisensory conditions, an individual block required about an hour to

complete. These conditions were run over four one-hour sessions. Although

subjects performed four blocks of trials, we discarded data from the first

block because subjects were unfamiliar with the objects and with the exper-
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imental task during this block. Results reported above are based on data

from blocks 2-4.

Subjects: Subjects were 30 students at the University of Rochester who re-

ported normal or corrected-to-normal visual and haptic perception. Subjects

were paid $10 per hour. Of the 30 subjects, 2 subjects provided similarity

ratings that were highly inconsistent across blocks (one subject in the vi-

sual condition and the other in the multisensory condition). A Grubbs test

(Grubbs, 1950) using each subject’s correlations among ratings in different

blocks revealed that these two subjects’ ratings are statistical outliers (Sub-

ject 1: g = 2.185, p < 0.05; Subject 2: g = 2.256, p < 0.05). These ratings

were discarded from further analyses. The remaining 28 subjects were di-

vided among the four experimental conditions, seven subjects per condition.

MVH-V and MVH-H models applied to the experimental data:

The MVH-V and MVH-H models are equivalent to alternative models. For

instance, consider a model that computes object similarity based solely on the

pixel values of images of those objects. In fact, this is equivalent to MVH-V.

This equivalency arises from the fact the the MVH model’s MAP estimates of

object shape are always correct (given an object, this estimate is the correct

representation of the object in terms of the shape grammar). When MVH-

V obtains images of two objects (by rendering the object representations

using the vision-specific forward model), these images are also always correct

(they are identical to the true images of the objects). Consequently, MVH-V
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performs no differently than a model that rates object similarity based on

the pixel values of images of objects. Given this fact, why is MVH-V needed?

It is because people do not always have images of two objects (consider a

case where one object is viewed and the other object is grasped). Analogous

remarks apply to MVH-H.
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Chapter 3

Multisensory Part-based Representations
of Objects in Human Lateral Occipital
Cortex

Introduction

While eating breakfast, the object shape you perceive when viewing your cof-

fee mug is the same as the shape you perceive when grasping your mug. This

phenomenon illustrates modality invariance, an important type of perceptual

constancy. Modality invariance suggests that people have representations of

objects that are multisensory (i.e., with a significant degree of modality in-

dependence).

From behavioral studies, we know that participants trained in the visual

modality to recognize novel objects show partial or near-complete transfer

to the haptic modality, and vice versa (Lawson, 2009; Lacey et al., 2007;

Norman et al., 2004), and that object similarity is judged in similar ways

across modalities (Gaissert & Wallraven, 2012; Gaissert et al., 2011, 2010;
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Cooke et al., 2007, 2006). Those findings suggest that participants base

their similarity judgments on a multisensory representation. Where is the

neural substrate for these representations and how are the representations

structured?

Prior brain imaging work suggests that human lateral occipital cortex

(LOC) is one seat of multisensory representations of object shape, at least

across the visual and haptic modalities. Previous research shows that LOC

represents visual information about object shape (Grill-Spector et al., 2001;

Kourtzi & Kanwisher, 2001) and responds to haptic exploration of objects

in sighted and congenitally blind individuals (Naumer et al., 2010; Amedi et

al., 2002; James et al., 2002; Amedi et al., 2001). Furthermore, neural shape

similarity matrices from blind participants are correlated with neural shape

similarity matrices from sighted individuals (Peelen, He, Han, Caramazza, &

Bi, 2014), suggesting that LOC is biased to represent object shape even if

the principal modality of input is not vision.

To date, researchers have relied mainly on two measures—amount of neu-

ral “activation” (e.g., BOLD contrast) and correlations between neural sim-

ilarity matrices—to argue for the multisensory nature of representations in

LOC. Most studies compared the amount of BOLD contrast in LOC in re-

sponse to visually and haptically presented stimuli. For example, James

et al. (2002) showed that both visual and haptic exploration of objects led

to neural activity in LOC. Similarly, Amedi et al. (2001, 2002) argued for

multisensory shape representations in LOC on the basis of increased neural
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activity in response to objects compared with textures for visual and hap-

tic stimuli. In a more recent study, Naumer et al. (2010) showed that the

amount of neural activation when stimuli are presented through both visual

and haptic modalities is higher than the amount of neural activation when

stimuli are presented through a single modality.

Importantly, comparing the amount of activation in response to visual

and haptic presentation of objects is an indirect test of multimodality of neu-

ral representations. It is quite possible that LOC carries distinct modality-

specific representations for both visual and haptic object shape. A stricter

test is possible by measuring the similarity in patterns of neural activity. Re-

cently, Peelen et al. (2014) calculated neural similarity matrices for a set of

objects presented visually and verbally to blind and sighted individuals. By

measuring the correlations between these neural similarity matrices, Peelen et

al. (2014) argued that LOC carries a cross-modal shape representation. With

respect to our current goals, there are two limitations associated with this

study. First, Peelen et al. (2014) did not measure neural activity in response

to haptic stimuli. Second, the correlation between two neural similarity ma-

trices is a measure of second-order relations between two representations.

It is possible for visual and haptic neural similarity matrices to be highly

correlated even though the visual and haptic representations themselves are

not. Here, we present a stricter test of the multisensory nature of object

representations in LOC by correlating activations from different modalities

directly to form cross-modal neural similarity matrices. Our analyses show
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that cross-modal correlation of an object with itself is larger than the cross-

modal correlations among different objects and that objects can be decoded

cross-modally from neural activations in LOC.

The second question we focus on is concerned with the structure of multi-

sensory shape representations in LOC. Two competing theories emerge from

previous research on object shape representations. First, view-based theories

argue that the representation for an object is a collection of 2D images of

the object from different views (Peissig & Tarr, 2007). View dependency

of object recognition is usually advanced as the main evidence for the view-

based hypothesis. For example, a previous study (Bulthoff & Edelman, 1992)

showed that the recognition performance for previously seen views of an ob-

ject is better than the performance for views of the same object not previously

seen. However, the view-based hypothesis is difficult to reconcile with the

hypothesis that LOC encodes multisensory object representations, because

the view-based hypothesis presumes a strictly visual nature of object repre-

sentations.

Alternatives to the view-based hypothesis are part-based or structural de-

scription theories (e.g., Peissig & Tarr, 2007; Riddoch & Humphreys, 1987).

These theories assume that objects are represented as collections of parts

and the spatial relations among these parts. There is behavioral and neural

evidence for both aspects of the part-based theory: representation of parts

and spatial relations among those parts. An influential study by Biederman

(1987) showed that priming is principally mediated by parts, and recognition



76

suffers dramatically when part-related information is removed. Later studies

also investigated whether spatial relations are explicitly represented. For ex-

ample, Hayworth et al. (2011) found that it was impossible for participants

to ignore relations between objects in a scene even when that information

was irrelevant. Importantly for our current study, previous work has found

evidence that LOC encodes object parts and spatial relations explicitly. Us-

ing fMRI adaptation, Hayworth and Biederman (2006) found that, when

part-related information was removed from an image, there was a release

from adaptation in LOC, suggesting that different parts involve different

LOC representations. A separate study (Hayworth et al., 2011) showed that

a comparable amount of release from adaptation in LOC is observed when

the spatial relation between two objects is changed as when one of the ob-

jects is replaced with a new object. This suggests that spatial relations are

encoded explicitly by this region. More recently, Guggenmos et al. (2015)

tested whether LOC encodes objects in a part-based or holistic manner by

measuring decoding accuracy for split and intact objects. They showed that

a classifier trained on neural activations for intact objects can successfully

discriminate between activations for split objects (e.g., a camera with its

lens and body separate) and vice versa. These studies suggest that LOC

represents objects in a part-based format. Here, we provide further evidence

for this hypothesis by showing that a novel object can be decoded from the

neural activations in LOC based on part-based representations.
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Methods

Participants

Twelve (six in Experiment 1 and six in Experiment 2) University of Rochester

students (mean age = 21.5 years, SD = 1.57 years, five men) participated

in the study in exchange for payment. All participants were right-handed

(assessed with the Edinburgh Handedness Questionnaire), had normal or

corrected-to normal vision, and had no history of neurological disorders. All

participants gave written informed consent in accordance with the University

of Rochester research subjects review board.

General Procedure

Stimulus presentation was controlled with “A Simple Framework” (Schwarzbach,

2011) written in MATLAB Psychtoolbox (Brainard, 1997; Pelli, 1997) or

E-Prime Professional Software 2.0 (Psychology Software Tools, Inc., Sharps-

burg, PA). For all fMRI experiments with visual presentation of stimuli, par-

ticipants viewed stimuli binocularly through a mirror attached to the head

coil adjusted to allow foveal viewing of a back-projected monitor (temporal

resolution = 120 Hz). Each participant completed four 1-hr sessions: one

session for retinotopic mapping and somatosensory and motor cortex map-

ping (data not analyzed herein), one session for an object-responsive cortex

localizer, and two sessions for the experiment proper (visual and haptic ex-
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ploration of objects).

Object-responsive Cortex Localizer (LOC Localizer)

The session began with (i) one 6-min run of resting state fMRI, (ii) eight

3-min runs of the object-responsive cortex localizer experiment, and (iii) one

6-min run of resting state fMRI. The resting state fMRI data are not analyzed

herein.

To localize object-responsive areas in the brain, participants viewed scram-

bled and intact images of tools, animals, famous faces, and famous places (see

Q. Chen, Garcea, & Mahon, 2016; Fintzi & Mahon, 2013). For each of four

categories (tools, animals, faces, and places) 12 items were selected (e.g.,

hammer, Bill Clinton, etc.), and for each item, eight exemplars (gray-scale

photographs) were selected (e.g., eight different hammers, eight different pic-

tures of Bill Clinton, etc.). This resulted in a total of 96 images per category

and 384 total images. Phase-scrambled versions of the stimuli were created to

serve as a baseline condition. Participants viewed the images in a miniblock

design. Within each 6-sec miniblock, 12 stimuli from the same category were

presented, each for 500 msec (0 msec ISI), and 6-sec fixation periods were

presented between miniblocks. Within each run, eight miniblocks of intact

images and four miniblocks of phase-scrambled versions of the stimuli were

presented with the constraint that a category of objects did not repeat dur-

ing two successive miniblock presentations. All participants completed eight

runs of the object-responsive cortex localizer experiment (91 volumes per
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run).

Experimental Materials

The stimuli used in Experiment 1 were taken from the set of objects known

as Fribbles (Tarr, 2003). We picked 12 Fribbles (four objects from three

categories) for Experiment 1. For the stimuli used in Experiment 2, we

created a new set of objects by taking parts from Fribbles and combining

them in the following way. Each object is made up of five components where

the body (one component) is common to all objects. The remaining four

components are located at four fixed locations on the body. For each location,

there are two possible parts or values that the component can take (i.e., 2×4 ,

hence 16 objects). Figures 3.1 and 3.2A show the entire set of objects used in

Experiments 1 and 2, respectively. Figure 3.7 shows how we constructed the

set of objects for Experiment 2 from the parts and how these were combined

to create an example object. For the haptic stimuli, we used 3D-printed

plastic models of the objects. The physical objects were approximately 11.5

cm long, 6.0 cm wide, and 7.5 cm high.

To summarize, the stimuli used in Experiment 1 were drawn from three

“categories” of objects (four items per category) but the part structure was

not explicitly (i.e., factorially) manipulated across the stimulus set. In con-

trast, in Experiment 2, the materials were created by creating all possible

combinations of part values (two values) at each of four possible locations,

leading to a factorial stimulus space defined by part structure.
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Visual and Haptic Exploration of Novel Objects (Two
Sessions)

Each participant completed two 1-hr sessions of the experiment proper. Each

session was composed of four runs, two runs dedicated to visual exploration

of objects and two runs dedicated to haptic exploration of objects. In the

first experiment, the participants observed each novel object stimulus in the

visual and haptic conditions; that is, all 12 objects were presented in each

run. In the second experiment, the novel object stimuli were divided (arbi-

trarily) into two sets, A and B. Within a given scanning session, a participant

was presented (for instance) Set A for haptic exploration and Set B for visual

exploration; that is, in each run, participants saw eight objects. In their sec-

ond session for the experiment proper, that same participant was presented

Set B for haptic exploration and Set A for visual exploration. This ensured

that participants only viewed or only haptically explored a given object in a

given scanning session. The order of a given item set (Set A first, Set B first)

by modality (visual, haptic) was also counterbalanced across participants.

For both Experiments 1 and 2, visual and haptic exploration was blocked

by run, organized in an ABBA/BAAB fashion, and counterbalanced evenly

across participants.

While laying supine in the scanner, participants were visually presented

with the objects or were required to keep their eyes closed while haptically

exploring the objects. In the haptic condition, the objects were handed to the

participant by the experimenter. For runs in which items were visually pre-
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sented, participants were instructed to deploy their attention to the features

of the object.

In the visual condition in Experiment 1, the objects were presented in

the center of the screen for the participants to fixate upon. Miniblocks were

4-sec long and were interspersed by 8-sec fixation periods. Each object was

presented in four miniblocks per run, with the constraint that the same ob-

ject did not repeat on two successive miniblocks. This meant that there were

a total of 48 (12 × 4) object presentations in each run. In Experiment 2,

the objects were presented centrally and rotated 40 degrees per second along

the vertical axis (i.e., the objects revolved in the depth plane). Miniblocks

in the visual condition were 9-sec long and were interspersed by 9-sec fix-

ation periods. Each object was presented in four miniblocks per run, in a

similar manner to Experiment 1. Therefore, there were in total 32 (8 ×

4) object presentations in each run. In the haptic condition, participants

were instructed to form a mental image of the plastic object while haptically

exploring the object with their hands. In Experiment 1, miniblocks were

12-sec long and were interspersed by 9-sec periods in which their hands were

unoccupied. Each plastic object was presented in four miniblocks per run,

with the constraint that the same item did not repeat across two successive

miniblock presentations. Miniblocks in Experiment 2 were 16-sec long and

were interspersed by 16-sec periods in which their hands were unoccupied.

Each plastic object was presented in four miniblocks per run, in a similar

manner to Experiment 1.
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In our experiments, participants performed no explicit task other than

visually or haptically exploring the presented objects. We believe such a de-

sign enables us to investigate visual-haptic processing without any potential

task-related effects. Previous research shows that, even in the absence of

any explicit task, visual and haptic processing converges in LOC (Naumer

et al., 2010). Although our participants did not perform an explicit task, we

asked them to mentally picture the object they were exploring in the haptic

condition. This might raise suspicions about whether the activation in LOC

was due to mental imagery rather than haptic processing. However, previous

research suggests that LOC is minimally activated by mental imagery (James

et al., 2002; Amedi et al., 2001).

Before the experiment began, participants were introduced to compara-

ble plastic objects outside the scanner. These objects were not used in the

experiment proper and were dissimilar to the experimental stimuli. Visual

analogs of the objects were also presented to the participants to inform them

of the format of the visual experiment and to practice the implicit task that

they were required to carry out while in the scanner.

MR Acquisition and Analysis

MRI Parameters

Whole-brain BOLD imaging was conducted on a 3-T Siemens (Amsterdam,

The Netherlands) MAGNETOM Trio scanner with a 32-channel head coil
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located at the Rochester Center for Brain Imaging. High-resolution struc-

tural T1 contrast images were acquired using a magnetization prepared rapid

gradient-echo pulse sequence at the start of each participant’s first scanning

session (repetition time = 2530, echo time = 3.44 msec, flip angle = 7◦, field

of view = 256 mm, matrix = 256 × 256, 1 × 1 × 1 mm sagittal left-to-right

slices). An EPI pulse sequence was used for T2* contrast (repetition time =

2000 msec, echo time = 30 msec, flip angle = 90◦, field of view = 256 × 256

mm, matrix = 64 × 64, 30 sagittal left-to-right slices, voxel size = 4 × 4 ×

4 mm). The first six volumes of each run were discarded to allow for signal

equilibration (four at acquisition and two at analysis).

fMRI Data Analysis

fMRI data were analyzed with the BrainVoyager software package (Version

2.8) and in-house scripts drawing on the BVQX toolbox written in MAT-

LAB (wiki2.brainvoyager.com/bvqxtools). Preprocessing of the func-

tional data included, in the following order, slice scan time correction (sinc

interpolation), motion correction with respect to the first volume of the first

functional run, and linear trend removal in the temporal domain (cutoff:

two cycles within the run). Functional data were registered (after contrast

inversion of the first volume) to high-resolution deskulled anatomy on a

participant-by-participant basis in native space. For each participant, echo-

planar and anatomical volumes were transformed into standardized space

(Talairach & Tournoux, 1988). Functional data for the localizer experiment
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(object-responsive cortex localizer) were smoothed at 6 mm FWHM (1.5 mm

voxels) and interpolated to 3 mm3 voxels; functional data for the experiment

proper (visual and haptic exploration of objects) were interpolated to 3 mm3

but were not spatially smoothed.

For all experiments, the general linear model was used to fit beta es-

timates to the experimental events of interest. Experimental events were

convolved with a standard 2-gamma hemodynamic response function. The

first derivatives of 3D motion correction from each run were added to all

models as regressors of no interest to attract variance attributable to head

movement. Thus, all multi-voxel pattern analyses were performed over beta

estimates.

In all multivoxel analyses, we normalized individual voxel activations

within a run to remove baseline differences across runs. In other words, for

each voxel, we subtracted the mean activation for that voxel over all objects

in the run and divided it by the standard deviation of that voxel’s activa-

tion across objects. Additionally, for linear correlation multivoxel analyses,

activations for all eight repeats of a single item (in a given modality, i.e.,

visual/haptic) were averaged to obtain a single activation vector for each

item. In our correlation analyses, we transformed correlation values using

Fisher’s z transformation and ran all statistical tests on those transformed

values. When calculating correlations between correlation matrices, we used

only the upper triangles of matrices. All statistical tests were two-tailed.

For training the support vector machine (SVM) for decoding, we used the
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library libsvm (www.csie.ntu.edu.tw/~cjlin/libsvm/). We used linear

kernels with cost parameter set to 1.

Whole-brain pattern analyses were performed using a searchlight ap-

proach (Kriegeskorte et al., 2006). Whole-brain searchlight maps were com-

puted with a mask fit to the deskulled Talairach anatomy of individual par-

ticipants. The “searchlight” passes over each voxel (in each participant) and

extracts the beta estimates (for 16 items) for the cube of voxels (n = 125)

that surround the voxel. The analysis was carried out based on the pattern

of responses across the 125 voxels, and the results were assigned to the center

voxel of that cube. All whole-brain analyses were thresholded at p < .005

(corrected), cluster threshold for nine contiguous voxels. If no regions were

observed at that threshold, a more lenient threshold was used (p < .05,

uncorrected, nine voxels).

Definition of ROIs (LOC)

Left and right LOC were identified at the group level using the object-

responsive localizer experiment with the contrast of [intact images] > [scram-

bled images]. The result used cluster size corrected alpha levels by threshold-

ing individual voxels at p < .05 (uncorrected) and applying a subsequent clus-

ter size threshold generated with a Monte Carlo style permutation test (1000

iterations) on cluster size to determine the appropriate alpha level that main-

tains Type I error at 1% (using AlphaSim as implemented in Brain Voyager).

The Talairach coordinates were as follows: left LOC: x = 40, y = 71, z = 9;
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right LOC: x = 38, y = 65, z = 12. We note as well that none of the results

in this study change qualitatively if LOC is defined individually for each

participant, rather than at the group level.

Results

Our study consisted of two experiments. In both experiments, participants

either viewed or haptically explored a set of objects during fMRI. The stimuli

for Experiment 1 consisted of 12 objects (four objects from three categories;

see Figure 3.1) picked from the set of objects known as Fribbles (Tarr, 2003).

For Experiment 2, we created a novel set of objects based on Fribbles. Each

object in this set was composed of one component that was common to

all objects and four components that varied across objects. The variable

components were located at four fixed locations (Figure 3.2A), and there

were two possible parts (or values) that each component could take (i.e.,

24 = 16 objects in total).

Cross-modal Decoding of Novel Objects in LOC

If object representations in LOC are multisensory across haptic and visual

modalities, it should be possible to decode object identity using cross-modal

representational similarity analyses. To that end, we correlated the voxel

patterns in LOC elicited when a participant was viewing objects with the

voxel patterns elicited when the same participant haptically explored the
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Figure 3.1: Experimental stimuli used in Experiment 1. The stimuli are
taken from the set of novel objects known as Fribbles (Tarr, 2003).
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Figure 3.2: (A) Experimental stimuli used in Experiment 2. The stimuli
are based on Fribbles (Tarr, 2003). (B) Results of agglomerative clustering
applied to behavioral similarity data from the visual condition. (C) Results
of agglomerative clustering applied to haptic behavioral similarity data. (D)
Scatter plot of cross-modal behavioral similarity judgments versus similari-
ties calculated from part structure. Similarities based on part structure are
calculated by counting the number of shared parts between pairs of objects.



89

objects. The resulting representational similarity analysis quantifies the sim-

ilarity of voxel patterns across modalities, comparing every object to every

other object as well as to itself. Previous studies have calculated neural

similarity matrices separately for each modality and then subsequently cor-

related those matrices (e.g., Peelen et al., 2014). Such an approach amounts

to showing that neural correlations among objects in one modality correlate

with the neural correlations among objects in another modality. The goal

of the current analysis is to run a stricter test of the hypothesis that LOC

encodes objects in a multisensory manner by correlating voxel patterns from

different modalities directly to form a cross-modal neural similarity matrix.

Two predictions are made by the hypothesis that object representations

in LOC are multisensory. First, cross-modal correlations between the visual

and haptic voxel patterns for the same object will be higher than cross-

modal correlations among the voxel patterns for different objects (i.e., the

diagonal values will be greater than the nondiagonal values in the cross-

modal representational similarity matrix). The results of this analysis for

each participant in Experiments 1 and 2 can be seen in Figure 3.3. For every

participant in right LOC and for 10 of 12 participants in left LOC, cross-

modal correlations were in fact higher for identical objects than they were for

different objects (see Figure 3.4 for average cross-modal correlation matrices).

Because an initial ANOVA analysis found no effect of Experiment (L-LOC,

F = 0.17, p = .69; R-LOC, F = 0.48, p = .50), we combined the results

from both experiments. Diagonal versus non-diagonal differences reached
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statistical significance in both L-LOC and R-LOC (L-LOC, difference = 0.06;

t = 3.86, p < .004; R-LOC, difference = 0.05; t = 5.08, p < .001), indicating

that LOC contains multisensory representations of objects. A second and

stricter prediction is that it should be possible to decode object identity

using the representational similarity matrix by testing whether each object

is more correlated with itself (across modalities) than it is with each of the

other objects in the set (also across modalities). We calculated the decoding

accuracies for each participant and compared these to the chance decoding

accuracy (1/12 for Experiment 1 and 1/16 for Experiment 2). Again, because

an initial ANOVA analysis found no effect of Experiment (L-LOC, F =

0.67, p = .43; R-LOC, F = 0.82, p = .39), we combined the results from both

experiments. Our results showed that it is possible to decode object identity

cross-modally in both L-LOC and R-LOC (L-LOC, difference from chance

accuracy = 0.09, t = 2.48, p < .04; R-LOC, difference = 0.10, t = 3.48, p <

.006). These data indicate that LOC contains multisensory representations

of objects.

We then tested whether multisensory coding of novel objects was specific

to LOC or was a property observed throughout the brain. To that end,

a whole brain searchlight analysis was conducted in which each voxel was

coded according to whether it (and its immediate neighbors) showed higher

pattern similarity for an object correlated with itself (across modalities) than

with other objects (also cross modality). Converging with the ROI analyses,

the results (Figure 3.5) identified the right LOC in both experiments (see
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Figure 3.3: Comparison between diagonals and nondiagonals of cross-modal
similarity matrices for both experiments. Participants 1-6 are in Experi-
ment 1, and participants 7-12 are in Experiment 2. Avg = average of all 12
participants. (A) Results for left LOC. (B) Results for right LOC.
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Figure 3.4: Cross-modal similarity matrices for both experiments. (A, B)
Cross-modal similarity matrices calculated from left (A) and right (B) LOC
activations from Experiment 1. (C, D) Cross-modal similarity matrices cal-
culated from left (C) and right (D) LOC activations from Experiment 2.
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Table 3.1 for coordinates). The left posterior temporal-occipital cortex was

also identified in the searchlight analyses from both experiments.

A Common Similarity Space of Novel Objects as Derived
from Neural and Behavioral Metrics

The stimuli used in Experiment 2 were designed to have a clear part-based

structure for the purpose of testing the part-based hypothesis through repre-

sentational similarity and neural decoding analyses. In a prior study (Erdogan,

Yildirim, & Jacobs, 2015), we collected behavioral similarity judgments for

these stimuli while participants viewed or haptically explored the objects.

Similarity ratings consisted of Likert similarity ratings (range 1:7) for each

pair of objects. We evaluated how well participants’ judgments of the sim-

ilarity among the objects were explained by the part-based structure of

the objects. As shown in Figure3.2D, the agreement was extremely good

(R2 = .96). This indicates that participants perceive the similarity among

these object stimuli in terms of their part structure. Therefore, a significant

agreement between the neural similarity matrices and behavioral similarity

judgments will lend support to both the hypothesis that LOC representa-

tions are multisensory and to the hypothesis that they are part based. We

tested this prediction by calculating correlations between behavioral similar-

ity judgments and measures of object similarity derived from neural data.

A visual similarity matrix was formed by correlating voxel patterns when

participants viewed the objects during fMRI, and a haptic similarity ma-
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Figure 3.5: Whole searchlight analysis of brain regions in which the diagonal
of the cross-modal neural similarity matrix is greater than the off-diagonal
values. The cross-modal similarity matrix was created by correlating the
voxel patterns elicited when visually exploring objects with the voxel patterns
elicited when haptically exploring objects. If the diagonal of the matrix is
greater than the off-diagonal values, that means that the pattern of voxel
activations elicited by an object (across modalities) is more similar than the
patterns elicited by two different objects.
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Talairach Coordinates
Region x y z Cluster Size (mm2) t p
Exp1: Diagonal of the Cross-modal Neural Similarity Matrix > Off-diagonal Values (p <
.05, Cluster > 9 Voxels)
Precentral gyrus LH -51 -13 34 6790 8.55 < .001
Middle occipital gyrus LH -24 -88 19 25007 12.28 < .001
Lateral occipital cortex LH -39 -67 -14 12.28 < .001
Precentral gyrus RH 57 -1 19 1469 7.06 < .001
Postcentral gyrus RH 63 -25 38 3175 7.51 < .001
Lateral occipital cortex RH 39 -55 -5 23568 13.83 < .001

Exp2: Diagonal of the Cross-modal Neural Similarity Matrix > Off-diagonal Values (p <
.05, Cluster > 9 Voxels)
Inferior frontal gyrus LH -39 20 10 1100 5.47 < .01
Precentral gyrus LH -30 -16 52 1514 7.30 < .001
Superior parietal lobule LH -21 -58 58 4417 12.27 < .001
Inferior frontal gyrus RH 39 17 16 1450 6.19 < .002
Superior temporal gyrus RH 51 -25 7 877 10.04 < .001
Lateral occipital cortex RH 50 -62 -18 257 3.88 < .01

Exp2: Correlation between Neural and Behavioral Similarity for Visual Exploration of
Objects (p < .05, Cluster > 9 Voxels)
Parietal lobe LH -18 -58 46 539 8.67 < .001
Lateral occipital cortex RH 42 -70 1 742 9.84 < .001
Lingual gyrus RH 0 -73 -11 2607 6.02 < .002

Exp2: Correlation between Neural and Behavioral Similarity for Haptic Exploration of
Objects (p < .05, Cluster > 9 Voxels)
Lateral occipital cortex LH -39 -67 -14 1230 9.99 < .001
Precentral gyrus RH 42 -13 34 1577 10.78 < .001
Postcentral gyrus RH 51 20 34 2323 19.19 < .001
Parietal lobe RH 9 -37 61 3143 12.86 < .001
Superior temporal gyrus RH 42 -49 19 2110 13.79 < .001
Lateral occipital cortex RH 33 -73 -8 2190 11.84 < .001

Table 3.1: Talairach Coordinates, Cluster Sizes, Significance Levels, and
Anatomical Regions for the Searchlight Results (LH=left hemisphere,
RH=right hemisphere)
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trix was formed when participants haptically explored the objects during

fMRI. As predicted by the hypothesis that LOC encodes multisensory, part-

based representations of objects, the neural similarity matrices obtained from

R-LOC for both modalities were correlated with the behavioral similarity

matrices (neural similarity measures based on visual exploration: L-LOC:

r = .02, t = 1.10, p = .33, R-LOC: r = .08, t = 4.21, p < .009; Haptic condi-

tion, L-LOC: r = .08, t = 1.52, p = .187, R-LOC: r = .14, t = 3.28, p < .03).

To evaluate the degree to which the observed relationship between behav-

ioral and neural similarity measures was specific to LOC, we again carried

out a whole-brain searchlight analysis that maps how similar the neural simi-

larity matrices were to the behavioral similarity matrices. The most stringent

test of whether LOC encodes multisensory representations of novel objects

is to test whether LOC is identified by two independent searchlight analy-

ses: The first analysis relates neural and behavioral similarity data for visual

exploration of objects, and the second analysis relates neural and behav-

ioral similarity data for haptic exploration of objects. Thus, the key test is

whether these two independent searchlight analyses overlap in LOC. The re-

sults indicate overlap in right LOC (see Table 3.1 for Talairach coordinates).

As can be seen in Figure 3.6, there is good overlap (35 voxels, 958 mm3 ,

across the maps in Figure 3.6A, B, and C) between the independent func-

tional definition of right LOC (objects > scrambled images) and right LOC

as identified by the two independent multivoxel pattern searchlight analy-

ses. Interestingly, the whole-brain searchlight analysis over haptic data also
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identified several other regions in the temporal and frontal lobes involved in

sensory processing (see Table 3.1 for coordinates).

Object Category Representations in LOC

Stimuli in Experiment 1 formed three families or categories of objects (Fig-

ure 3.1). This raises the possibility of evaluating whether LOC object repre-

sentations encode category structure. Using analyses of the LOC cross-modal

similarity matrix, we found that neural activations were more similar when

considering two objects belonging to the same category than when consider-

ing two objects belonging to different categories. Using decoding analyses,

we found that we can decode the category to which an object belongs at

above-chance levels. However, because we are uncertain about the proper

interpretation of these results, we do not study LOC object category repre-

sentations here. One possibility is that LOC encodes the category structure

of objects. Another possibility is that LOC encodes object shape and that the

results regarding category structure are due to the fact that objects belong-

ing to the same category have similar shapes in our experiment and objects

belonging to different categories have dissimilar shapes. Because we cannot

distinguish these two possibilities based on the stimuli used here and because

there is substantial evidence indicating that LOC represents object shape, a

stronger test of the nature of LOC object representations is provided by fine-

grained analysis of the part structure within the materials from Experiment

2.



98

Figure 3.6: Overlap in right LOC for the (A) functional localizer (i.e., ob-
jects > scrambled objects), (B) a whole brain searchlight analysis of the
correlation between neural similarity matrices and behavioral similarity for
visual exploration of objects, and (C) a whole brain searchlight analysis of
the correlation between neural similarity matrices and behavioral similarity
for haptic exploration of objects.
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Part-based Object Representations in LOC

Finally, we sought to directly test the hypothesis that LOC encodes objects

in a part-based manner. If the shape representations in LOC are encod-

ing object parts, we should be able to decode the parts that make up an

object from neural activations. We focused these analyses only on our sec-

ond experiment because the stimuli in our first experiment are not suited

to testing the part-based hypothesis. Although all objects used in Experi-

ment 1 have a clear part-based structure, each part is at most shared by two

objects, which drastically limits the amount of data available for decoding

part identities. However, the stimuli in our second experiment were designed

specifically to test the part-based hypothesis, with each part being shared

by 8 of 16 objects in the stimulus set. The objects in our second experiment

can be represented as four binary digits with each digit coding which one

of the two possible parts for each of the part locations is present (see Fig-

ure 3.7 for a schematic of this analysis approach). In our decoding analyses,

we thus sought to predict the four-digit binary representation of each object

using neural activity patterns. We trained four separate linear SVMs, one

for each location. Each SVM model was trained to predict which of the two

possible part values for that location was present in an object. Each of the

four classifiers was trained on 15 of the 16 objects, and the classifiers were

tested by having them jointly predict the four-digit binary representation

for the 16th object. If all four of the predictions (one for each location)

were correct, we counted that as a successful decoding of the object (see Fig-
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ure 3.7B). Thus, chance for this classification test was 0.54 = 0.0625. This

analysis approach was performed using 16-fold leave-one-out cross-validation,

each time leaving one object out (for test) and training the classifiers on the

remaining 15 objects. We then averaged the classification accuracies over

folds to obtain an estimate of the classification accuracy across all objects

for each participant. Statistical analysis was then performed over subject

means. The results of this analysis indicated that it was possible to de-

code novel objects in LOC, both for fMRI data obtained during visual and

during haptic exploration of the objects (visual condition, L-LOC: classifi-

cation accuracy = 0.198, t = 3.61, p < .016, R-LOC: classification accuracy

= 0.250, t = 5.81, p < .003; haptic condition, L-LOC: classification accu-

racy = 0.167, t = 2.50, p = .055, R-LOC: classification accuracy = 0.302,

t = 5.86, p < .003).

Discussion

We have shown that it is possible to decode object identity from a cross-

modal similarity matrix created by correlating LOC voxel patterns during

visual and haptic exploration of the same set of objects. This suggests that

there is a unique neural code generated during perceptual exploration of each

of the novel objects that is similar regardless of whether the sensory modality

is vision or touch. We also found that linear classifiers successfully predict

a novel object based on its part structure. Thus, the fundamental units
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Figure 3.7: (A) Design of stimuli. Each object is composed of four compo-
nents at four fixed locations. (Parts are colored for illustration purposes. All
images were grayscale in the experiment.) (B) Schematic of the decoding
model. Neural activations for 15 of the objects are used as the training set to
train four linear SVMs to predict parts at each location. Then, the trained
classifiers are used to predict the parts of the left-out test object, and these
predictions are compared with the true parts of the object.
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of object representation in LOC are expressed in terms of an object’s com-

posite parts. These findings provide further evidence for part-based visual

representations of objects in LOC and multisensory representations of whole

objects, at least across the haptic and visual modalities (Peelen et al., 2014;

Naumer et al., 2010; Amedi et al., 2001, 2002; James et al., 2002). Crucially,

our cross-modal decoding analyses relied on a direct comparison between

activations from different modalities, representing a more direct test of the

multi-sensory nature of object representations in LOC than was present in

prior studies. Additionally, we believe our part-based decoding of novel ob-

jects presents a significant step towards understanding the nature of object

representations in LOC. The only previous study that used a similar decod-

ing analysis (Guggenmos et al., 2015) employed simpler stimuli (two-part

objects) and presented objects only visually. Our study used a richer set

of stimuli and showed that decoding of a novel object is possible from both

visual and haptic activation in LOC. We believe that the findings we have re-

ported strongly suggest that object representations in LOC are multisensory

and part based.

Our results show an interesting hemispheric asymmetry; in most of our

analyses, the findings are stronger in R-LOC. We do not have a clear un-

derstanding of why this is the case. A recent study suggests that haptic

processing is stronger in LOC for the nondominant hand (Yalachkov, Kaiser,

Doehrmann, & Naumer, 2015). However, it is important to note that partic-

ipants in our experiment used both of their hands to explore objects. Addi-
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tionally, these hemispheric differences are seen in the visual condition as well,

making an explanation based on haptic processing unlikely. Future research

should investigate whether this hemispheric asymmetry is a consistent char-

acteristic of object shape processing or merely an artifact of our particular

sample.

Although we have referred to the object representations in LOC as multi-

sensory, it is worth pointing out that our study focused on visual and haptic

processing, simply because shape information is conveyed mainly through

these two modalities. For example, as previous research (Naumer et al.,

2010; Amedi et al., 2002) shows, LOC does not respond to auditory stimula-

tion. Similarly, our study says little about the representation of objects that

lack a clear part-based structure, for example, bell peppers, or that are pro-

cessed holistically, for example, faces. The question of how an object without

a clear part-based structure is represented lies at a finer level than that on

which our study focused; we did not investigate how an individual part might

be neurally represented but whether parts are explicitly represented in the

first place. Future research should focus on this more difficult question of

how individual parts are represented.

In this study, we focused mainly on LOC and the nature of object rep-

resentations in this region. However, looking at Table 3.1, we see that our

searchlight results identified other regions, for instance, the precentral gyrus

and the left posterior temporal-occipital cortex. Although none of those re-

gions show the consistent activity that LOC shows across various analyses,
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it is possible that multi-sensory object representations reside in a larger net-

work of brain regions and likely that multisensory object representations in

LOC are embedded in a broader network of regions that support multisen-

sory processing. This is an empirical question that needs to be addressed by

future research.

A key claim of the part-based hypothesis is that objects are represented

as a combination of shape primitives from a finite set. Although our data

cannot speak to the inventory of shape-based primitives that the brain may

encode, further research using the methods we have developed may be able to

describe that inventory. A second key aspect of part-based theories of object

representation is that spatial relations among parts are directly represented.

The findings we have reported motivate a new approach to test whether the

spatial arrangement among an object’s parts are encoded in the same region

(LOC) that encodes the part information. Alternatively, information about

the spatial arrangement of parts may be stored elsewhere in the brain.

Our findings also bear on the principal alternative theoretical model to

part-based object representations: image- or view-based models. View-based

theories argue that the representation of an object is a concatenation of

2D images of the object from different views (for discussion, see Peissig &

Tarr, 2007). View dependency in object recognition is advanced as the main

evidence for the view-based hypothesis. However, view-based models have

difficulty accounting for our finding that there is a high degree of similarity

in the voxel patterns elicited by haptic and visual exploration of objects and
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that the shared variance in voxel pattern maps onto the part structure of the

stimuli.

In this study, we have presented evidence that LOC carries multisensory

and part-based representations of objects. In addition to the empirical ev-

idence presented here and in earlier studies, we believe this hypothesis is

also appealing from a theoretical perspective as it elegantly captures how

information can be transferred across modalities, how inputs from multiple

modalities can be combined, and more generally, how we cope with a world

that is in its essence multisensory.
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Chapter 4

Visual Shape Perception as Bayesian In-
ference of 3D Object-Centered Shape Rep-
resentations

Introduction

Consider the objects in Figure 4.1. Even though you have not previously

encountered these objects, you can readily perceive that the object in Fig-

ure 4.1c is more similar to the object in Figure 4.1a than the object in

Figure 4.1b. However, the ease with which people make this judgment belies

the complexity of the mental operations involved in this task. People’s visual

systems need to extract a representation of these objects from 2D images,

and compare these representations to make a similarity judgment. This task

illustrates the essence of the computational problem of object shape percep-

tion.

How people perceive object shape is one of the most fundamental ques-

tions about human visual perception. However, as evidenced by decades of



107

research, this simple question is surprisingly difficult to answer. Researchers

have proposed numerous hypotheses about shape perception, and much re-

search has focused on proving or disproving particular hypotheses. These

efforts have led the field toward theoretical dichotomies such as whether peo-

ple’s shape representations are “view-based” or “structural”, or whether these

representations code two-dimensional or three-dimensional information. To

date, investigations into such dichotomies have rarely produced clear out-

comes. For example, after a long line of research on whether people’s shape

representations are view-based or structural, Peissig and Tarr (2007) sum-

marized the state of the debate as follows: “In the end, it is unclear whether

the large body of work focused on view-based models is compatible with,

incompatible with, or just orthogonal to structural models of object repre-

sentation”. Which approach, if either, properly characterizes human shape

perception is still a matter of fierce debate.

Here, we argue that existing models of shape perception are inadequate

in important respects, and we propose a new model based on the hypothe-

sis that shape perception of unfamiliar objects can be best understood as

Bayesian inference of 3D shape in an object-centered coordinate system.

This hypothesis includes four important components: (i) Our hypothesis

is a hypothesis about shape representations of unfamiliar objects. Shape

representations of familiar objects might be best understood in other ways.

Coverage of this topic is deferred until the “Discussion” section. (ii) Shape

perception for unfamiliar objects is a form of statistical inference which can
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be characterized as Bayesian inference. This implies that people’s shape rep-

resentations are probabilistic, and thus contain information about certainty

or confidence. For example, the shape properties of one portion of an ob-

ject (e.g., the portion of an object facing a viewer) might be represented

with high certainty, whereas the shape properties of another portion of the

same object (e.g., a portion seen in peripheral vision, or a portion that is

partially or fully occluded) might be represented with low certainty. It also

implies that shape representations are influenced by a person’s prior beliefs

about shape properties. (iii) Shape representations code information about

an object’s three-dimensional structure, not the two-dimensional structure

of its retinal image. (iv) Shape representations code shape properties in an

object-centered coordinate system, not a viewer-centered coordinate system.

Although each of these components has been studied previously in the

scientific literature, their combination has not. Indeed, as demonstrated be-

low, their combination gives rise to interesting and unexpected results. For

example, we have found that probabilistic object-centered representations

can underlie viewpoint-dependency, suggesting that the distinction between

view-based and view-independent representations is less useful than com-

monly believed when applied to the study of viewpoint invariance.

This article provides support for our hypothesis along two lines. First, we

show that the use of 3D object-centered shape representations does not im-

ply viewpoint-invariant object recognition. As demonstrated below, a person

may, for example, attempt to infer a 3D object-centered shape representa-
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tion from a 2D image in which one portion of a viewed object is clearly

visible whereas another portion is not. If shape representations are treated

in a probabilistic manner, the person’s shape representation will have high

certainty about shape properties in the former portion and low certainty

about shape properties in the latter portion, thereby leading to viewpoint-

dependent object recognition. We find that a computational model based

on our hypothesis successfully accounts for the finding that people’s ob-

ject recognition performances can be viewpoint-dependent. Consequently,

viewpoint-dependency should not be regarded as evidence for a view-based

account of object recognition, as is typically done in the scientific literature.

Second, we report the results of an experiment using a shape similar-

ity task, and evaluate a broad array of existing models of shape perception

for their abilities to account for the experimental data. This evaluation pro-

vides compelling empirical support for our 3D object-centered shape inference

model. Because the model captures subjects’ judgments better than its com-

petitors, our results support the hypothesis that people’s object shape repre-

sentations for unfamiliar objects are probabilistic, 3D, and object-centered.

We conclude that our hypothesis is unique in its explanatory power and

scope, and provides a promising approach for future investigations of object

shape perception.
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(a) (b) (c)

Figure 4.1: Is the shape of the middle or rightmost object more similar to
the shape of the leftmost object?

Theoretical Background

It is frustratingly difficult to present a clear and well-organized analysis of hy-

potheses on shape perception. This is mostly because research on shape per-

ception has revolved around dichotomies that are rarely rigorously defined,

such as whether shape representations code 2D or 3D information, whether

these representations are view-based or view-independent, or whether these

representations are holistic or structural. These poorly defined dichotomies

make the boundaries between different hypotheses hard to discern. In this

section, we follow the analysis provided by Palmer (1999) and discuss three

classes of shape perception hypotheses: feature-based, view-based, and struc-

tural description hypotheses. We present a critical review of each class, high-

lighting a class’s strengths and weaknesses. For each class, we first present

its main claims and then discuss computational models based on that class.
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Feature-based hypotheses

Feature-based hypotheses claim that object shape is represented by a list of

feature values extracted from 2D input images. These values are calculated

by feature extractors through multiple layers of processing in the visual sys-

tem. To compare the shapes of objects, one needs to specify a procedure

for evaluating the similarity between two feature-based representations. In

concrete models using a feature-based approach, feature values are usually

real-valued and dissimilarity is quantified as Euclidean distance between rep-

resentations. Feature-based hypotheses take their inspiration directly from

what we know about biological visual systems, and this class of hypotheses

represents the dominant perspective in the field of neuroscience. Building on

the early work of Hubel and Wiesel (1962), neuroscientists have investigated

visual perception by seeking to understand the neural feature detectors im-

plemented by our visual systems. To date, this project faces major challenges

in understanding cortical regions beyond primary visual cortex (Kourtzi &

Connor, 2011).

To be meaningful, a feature-based hypothesis needs to specify the par-

ticular features that the hypothesis claims to be involved in shape percep-

tion. One popular proposal claims that what characterizes these features is

that they are invariant to shape-preserving transformations such as transla-

tion and rotation (Palmer, 1999). Previous research has shown that some

neurons in inferotemporal cortex (IT) are significantly position and scale in-

variant (Riesenhuber & Poggio, 2002). However, recent research suggests
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that the extent of the invariance exhibited by these neurons is significantly

less than previously believed (Lehky & Tanaka, 2016). Moreover, the naive

invariance hypothesis cannot be the whole story because features that are

fully invariant to shape-preserving transformations are inadequate for visual

object recognition. For example, features that are fully position-invariant

cannot distinguish between two objects that consist of the same features but

in different spatial arrangements.

Feature-based models

In the field of computational neuroscience, an influential example of a feature-

based model is Riesenhuber and Poggio (1999)’s HMAX (hierarchical MAX)

model. HMAX extends Hubel and Wiesel (1962)’s ideas about simple and

complex cells to higher level visual areas by proposing a sequence of template

matching and pooling operations that build position and scale invariant fea-

tures. HMAX consists of alternating layers of what are called S and C layers.

Units in an S layer implement template matching. These templates can be

simple Gabor filters (as in early layers) or more complex features (as in later

layers) that are either specified by hand or learned. C layers play a key

role in building invariant features since these pool over multiple units in the

previous S layer and apply “max-pooling” (i.e., select the maximum input

activation). By pooling over units tuned to different positions and scales,

HMAX builds position and scale invariant features. Riesenhuber and Poggio

(1999) showed that HMAX captures tuning and invariance properties of IT
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neurons, and later work provided further evidence that HMAX is a good

model of higher level processing in biological visual systems (Cadieu et al.,

2007; Riesenhuber & Poggio, 2000, 2002; Serre, Oliva, & Poggio, 2007; Serre,

Wolf, Bileschi, Riesenhuber, & Poggio, 2007).

Feature-based hypotheses are also popular in the study of computer vi-

sion. Recently, multi-layer artificial neural networks known as convolutional

neural networks (CNNs) have achieved state-of-the-art object categorization

performances (Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, &

Hinton, 2015). These models are similar to HMAX in the sense that they

implement a sequence of feature extraction and pooling operations. However,

these models are much deeper (containing tens to hundreds of layers), and

features are learned from large amounts of labeled image data to maximize

performance. Given their successes in computer vision and their similarity to

hierarchical processing in biological visual systems, recent work in cognitive

science and neuroscience has started to investigate the extent to which these

models provide insights into biological vision (Kriegeskorte, 2015). Khaligh-

Razavi and Kriegeskorte (2014) compared a large set of models from com-

puter vision and computational neuroscience (including HMAX) on how well

they account for human fMRI and monkey neural data from cortical area

IT. Results showed that AlexNet (Krizhevsky et al., 2012), a popular CNN

trained on 1.2 million images, captured the most variance in IT activities. In

a related study, Cadieu et al. (2014) showed that CNNs rival the represen-

tational performance of IT, matching the object categorization performance
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of neural responses from IT.

Feature-based hypotheses are appealing in multiple respects. From a neu-

roscience perspective, they build object representations hierarchically through

multiple layers of processing, and thus resemble biological visual systems.

They have been found to provide useful models of neural processing at all

levels of the visual cortical hierarchy. From an engineering perspective, CNN

implementations of feature-based hypotheses provide state-of-the-art perfor-

mances, sometimes achieving object recognition and categorization perfor-

mances comparable to those of people. Additionally, these implementations

are appealing because they do not require preprocessing of the input image,

and they can work directly on natural images.

The main weakness of feature-based hypotheses is that they are too un-

constrained. Many feature-based models, such as CNNs, use adaptive fea-

tures that are learned from data to maximize performance on a specified task.

The shape perception procedure acquired by a feature-based model is deter-

mined by its training, including its training data and adaptation procedure

(e.g., loss function and optimization procedure). Therefore, a feature-based

model needs to specify not only its structural architecture (e.g., how many

layers of units, how are units in one layer connected to units in the next

layer, etc.), but also its training procedure in detail. Even when these details

are specified, there is reason to doubt whether current feature-based models

provide good scientific models of biological shape perception. These models

usually have large numbers of parameters (e.g., 60 million in Krizhevsky et
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al., 2012) that adapt with nonlinear dynamics, meaning that the models are

complex. To date, it is nearly impossible to know how and why these models

achieve what they achieve. Understanding why feature-based models work so

well is the focus of much current research (Anselmi, Rosasco, Tan, & Poggio,

2015; Mehta & Schwab, 2014; Patel, Nguyen, & Baraniuk, 2015; Yuille &

Mottaghi, 2016).

View-based hypotheses

View-based hypotheses claim that people’s shape representation for an object

consists of a collection of memorized “views” of the object from different

viewpoints. Recognition is achieved by comparing the observed view of an

object to these stored views. View-based hypotheses focus on this comparison

procedure rather than on how each view of an object is mentally represented.

Indeed, view-based hypotheses are agnostic with respect to how views are

represented (referred to as the “view encoding scheme”; see Tarr & Bulthoff,

1995, and Edelman, 1997). Different instantiations of view-based hypotheses

have proposed different view comparison procedures (see below).

View-based hypotheses are motivated primarily by experimental findings

demonstrating that visual object recognition performance can depend on the

viewpoint from which an object is observed (Edelman, Bulthoff, & Weinshall,

1989; Edelman & Bulthoff, 1992; Rock & DiVita, 1987; Tarr & Bulthoff, 1995;

Tarr et al., 1998). These studies have shown that it becomes harder to recog-

nize an object as it is rotated away from its training view. View-dependent
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recognition has been presented as evidence for view-based hypotheses, and

proponents of view-based hypotheses have argued that their findings pro-

vide strong evidence against approaches that use 3D, object-centered shape

representations. However, as we discuss below in more detail, this view has

been challenged by various researchers, and we demonstrate below with our

simulation study that 3D, object-centered shape representations can in fact

give rise to viewpoint dependency.

View-based models

Although view-based hypotheses do not make representational commitments,

most view-based models have assumed that views are stored as lists of 2D

features. These models have focused on how a test image can be compared

with the stored 2D views in order to recognize objects. The “alignment-

based” approach (S. Ullman, 1989) claims that the similarity between two

view-based representations is calculated by first aligning the views and then

comparing them. The alignment step aims to achieve robustness to shape-

preserving transformations (e.g., scaling, translation, rotation), thereby en-

abling recognition despite such variation. S. Ullman (1989) has presented

simple examples of how the alignment-based approach can be used to recog-

nize objects but this model has not been evaluated for its ability to account

for people’s recognition performances.

Another approach is recognition by linear combination of views (S. Ull-

man & Basri, 1991). S. Ullman and Basri (1991) showed that under ortho-
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graphic projection, views of an object span a linear subspace. Therefore, one

can evaluate whether a test view depicts an object simply by checking if the

test view can be represented as a linear combination of stored views of the

object. Since this process requires multiple views of an object, this model

cannot explain object recognition when relatively few views of an object re-

side in memory. For example, this model cannot recognize objects that are

seen from a single view.

Another influential view-based model is that of Poggio and Edelman

(1990). The model is an artificial neural network that is trained to map

the input image of an object to an image depicting what the object would

look like from a canonical viewpoint. The network is a “radial basis function”

network in which the basis functions are centered around the stored views.

The model has been used to replicate the experimental findings in Bulthoff

and Edelman (1992) demonstrating that people’s object recognition perfor-

mances can be viewpoint-dependent. Despite its strengths, the model can be

regarded as unsatisfactory in multiple respects. First, one needs hundreds

of views of an object to train the network (Longuet-Higgins, 1990). Even

if this might be possible for objects we encounter daily, it does not explain

how people recognize objects that are seen only a few times or perhaps only

once. Second, the model requires a separate network to be trained for each

object. Even if this is plausible, training separate networks for each object

ignores generalization across objects.

All view-based models suffer from a common problem—they all assume
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that the same set of features can be extracted from all views. This requires

determining the same set of features in all views, and also the correspondences

between features across different views. S. Ullman (1989) argued that our

visual systems can achieve this feature extraction easily. However, Poggio

and Edelman (1990) admitted that this is a non-trivial task. It might be

easy to extract and match features in the case of simple images, but it is

unclear whether feature extraction and matching can be so easily achieved

in natural settings.

Structural description hypotheses

Structural description hypotheses claim that object shape can be analyzed

using a finite set of simple shape primitives. The structural description of

an object consists of a list of the primitives making up that object and

the spatial relations among them. A structural description model needs to

specify three components: the structural description format (i.e., the set of

primitives and possible spatial relations between primitives); the shape ex-

traction procedure (i.e., how structural descriptions are extracted from 2D

images); and the shape comparison procedure (i.e., how similarity between

structural descriptions is measured). In principle, the structural descrip-

tion of an object can characterize either 2D or 3D information in either

viewer-centered or object-centered coordinate systems. However, structural

description hypotheses have almost always used 3D, object-centered shape

representations. Structural description hypotheses, along with the opposing



119

view-based hypotheses, were the subject of fierce debate during the 1980s and

1990s (Biederman & Gerhardstein, 1993, 1995; Tarr & Bulthoff, 1995). The

main point of contention was the viewpoint dependence of object recognition.

Structural description hypotheses were interpreted as implying that recogni-

tion would be viewpoint invariant since a full 3D, object-centered shape rep-

resentation is used in the recognition process. However, as we have remarked

above and will discuss in detail below, this conclusion is mistaken. 3D, object-

centered representations can, in fact, account for viewpoint-dependency.

Structural description models

Structural description models have a long history starting with the early

works of Binford (1971) and Marr and Nishihara (1978). Arguably the most

famous and detailed proposal is Biederman’s recognition-by-components (RBC)

theory (Biederman, 1987, 2007). RBC claims that objects are represented as

collections of 3D volumetric primitives called geons and the spatial relations

among them. Crucially, structural descriptions in RBC represent shape only

qualitatively. Geons do not encode metric properties such as the exact values

of a part’s width, height, depth, or aspect ratio. Similarly, relations between

geons are encoded in coarse terms such as above, below, left-of, and right-of.

Biederman (1987) presented a detailed account of the structural description

format and a sketch of how these representations might be extracted from

2D images on the basis of “non-accidental” features. Similarity between two

structural representations was assumed to depend on the degree of match be-
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tween representations, but the similarity measure was not specified in detail.

RBC has been at the center of the debate between structural description

and view-based hypotheses. It has been criticized because it fails to explain

viewpoint-dependency. RBC predicts view-invariant recognition in Bulthoff

and Edelman (1992)’s study because all stimuli used in the experiment have

the same structural description. In response to this criticism, Biederman and

Gerhardstein (1993) argued that RBC did not apply to the set of objects used

in these experiments because RBC was intended as a model of “entry-level”

categorization in which different objects have different structural descriptions

and where all geons are visible in all images. Thus, in Bulthoff and Edelman

(1992)’s experiment, subjects must be relying on a different shape perception

mechanism.

The argument provided by Biederman and Gerhardstein (1993) is an in-

stance of a two-process account of shape perception (Foster & Gilson, 2002;

Marsolek, 1999; Palmeri & Gauthier, 2004). According to such an account,

shape perception consists of two distinct processes. One is responsible for

what is usually called “metric” recognition (mainly concerned with within-

category discrimination, such as discrimination of objects that differ in metric

properties such as length, size, and aspect ratio). The second process is re-

sponsible for discriminating between objects that are qualitatively different

(e.g., across category discrimination). Biederman and Gerhardstein (1993)

argued that RBC concerns this non-metric, qualitative recognition process.

For this process, one should expect view-invariant recognition given that all
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geons of an object are visible in an image. However, although acknowledging

that such a two-process system is possible, Tarr and Bulthoff (1995) argued

that Biederman’s theory failed to explain what it purported to explain. There

are examples of objects (e.g., cow and horse) that have the same geon struc-

tural description but nonetheless belong to different categories. Additionally,

Biederman’s two-process account, although plausible, is far from elegant. It

is unclear why there should be two processes in the first place, apart from

the fact that RBC fails to adequately account for the data from some ex-

periments. Obviously, a far more satisfactory theory would capture both

metric and non-metric recognition, and explain under which circumstances

viewpoint-dependency is or is not obtained.

Overall, the strength of structural description hypotheses lies in the rich-

ness of their representations. Experimental data indicates that people seem

to think of many natural objects as composed of parts (Tversky & Hemenway,

1984), some of which may be considered objects in their own right. For ex-

ample, people think of bodies as consisting of parts such as limbs, torso, and

head. Structural descriptions capture the compositionality of many objects in

a natural manner. Compositionality is also crucial for efficiency since object

representations can refer to other object representations, and object parts

can be shared across objects. Additionally, structural descriptions make in-

formation about shape explicit. For example, a structural description model

can discriminate objects and also explain why they are different. However,

the power of structural description hypotheses can also be considered their



122

weakness. The shape extraction problem is very difficult when the goal is to

extract rich shape representations from realistic 2D images, and this might

explain why there have been so few implementations of structural descrip-

tion hypotheses (Hummel & Biederman, 1992). Perhaps more importantly,

it is unclear whether such powerful representations are needed for shape per-

ception. One might argue that structural description hypotheses make the

shape perception problem more difficult than is necessary in many circum-

stances, and people could do well enough at object recognition with simpler

representations.

This section has presented a critical analysis of existing hypotheses on

shape perception. We believe that the above exposition shows that exist-

ing hypotheses are inadequate in important respects. This conclusion will

be reinforced in Section 4.5 where we present an empirical evaluation of a

broad array of models using data from an experiment on people’s judgments

of shape similarity. In the next section, we outline our own hypothesis claim-

ing that shape perception for unfamiliar objects should be characterized as

Bayesian inference of 3D object-centered shape representations.

Shape Perception as Bayesian Inference of 3D
Object-Centered Shape Representations

Many researchers have argued that a fruitful approach to understanding bi-

ological visual perception is provided by the vision-as-inference hypothesis
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(Von Helmholtz, 1867). This hypothesis characterizes the task facing our

visual systems as the inference problem of extracting a description of (the

task-relevant portions of) the external world from the visual stimulations on

our retina. Using tools from the calculus of probability, modern research

has implemented and transformed this idea into the “visual perception as

Bayesian inference” hypothesis (Jacobs & Kruschke, 2011; Kersten & Yuille,

2003; Kersten et al., 2004; Knill & Richards, 1996; Yuille & Kersten, 2006).

According to this hypothesis, perception is understood as the inversion of a

generative model of how events in the visual environment give rise to reti-

nal stimulations. Visual-perception-as-Bayesian-inference has been fruitfully

applied to various aspects of visual perception, and past studies have shown

that many perceptual phenomena can be understood from a probabilistic per-

spective as Bayesian inference under different probability models (Kersten &

Yuille, 2003; Kersten et al., 2004; Knill & Richards, 1996). We believe that

the visual-perception-as-Bayesian-inference hypothesis provides a promising

approach to shape perception as well. We argue that shape perception can

be best understood as the inference problem of extracting a description of

object shape from 2D retinal stimulations.

The combination of this hypothesis with computational modeling provides

natural cures for many of the problems we identified in our discussion of ex-

isting hypotheses in the previous section. We have seen that many models

often leave important details unspecified. For example, RBC does not present

an account of how two structural descriptions are compared, or view-based
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models do not specify how views are encoded. Building computational mod-

els forces researchers to specify their theories clearly and rigorously, and the

visual-perception-as-Bayesian-inference hypothesis makes it especially easy

to do so. All that is required is to specify the generative model of how causes

(e.g., objects) in the world give rise to visual stimulations (i.e., images) on

the retina. Once a generative model is specified, the calculus of probability

provides equations for inferring the values of task-relevant variables. For in-

stance, one can categorize or identify objects, one can judge the similarity

between two shapes, and one can study the conditions under which recogni-

tion should be viewpoint-dependent versus viewpoint-invariant.

Here, we argue that shape representations for unfamiliar objects can be

characterized as coding 3D shape properties in an object-centered coordinate

system. An unusual feature of our approach is that these are probabilistic

representations, inferred using a statistical—specifically Bayesian—inference

mechanism. As a result, shape properties are random variables, meaning that

their values have distributions. The variances of these distributions carry in-

formation about the certainty of knowledge regarding these properties. For

instance, a shape property for the portion of an object that is clearly visible

may be inferred to have a distribution with a small variance, indicating rela-

tive certainty of knowledge about this property. At the same time, a property

for a portion that is less visible (e.g., it may be visible in peripheral vision, or

it may be partially or fully occluded) may be inferred to have a distribution

with a large variance, suggesting a lack of certainty of knowledge about this



125

property. As discussed below, this aspect of our theory allows us to account

for viewpoint-dependent object recognition (despite our theory’s use of an

object-centered coordinate system). In addition, our Bayesian approach im-

plies that an observer’s prior beliefs about shape properties influence his or

her inferences about these properties.

To our knowledge, there are few previous articles in the psychology lit-

erature with an approach to shape perception that is closely similar to our

own. In fact, the only one that we are aware of is the work of Feldman,

Singh, and colleagues (Feldman & Singh, 2006; Feldman et al., 2013). These

authors also treat shape perception as a form of Bayesian inference. In their

model, observers infer 2D skeletal shape representations from 2D silhouettes

of objects. These representations are based on medial-axis representations

first introduced by Blum and Nagel (1978). Feldman et al. (2013) showed

that their model is able to capture coarse shape similarity, and can also ac-

count for how some objects are decomposed into parts. While we have great

admiration for this work (indeed, it has inspired our own efforts), it also has

important shortcomings. To date, this model has not been tested as a general

theory of object shape perception. Although Feldman et al. (2013) argued

that their model can (eventually) be extended to handle 3D shape, their

model is currently limited to inferring 2D shape representations. Section 4.5

presents an evaluation of their shape skeleton model on a shape similarity

task.
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Viewpoint-Dependency with Probabilistic 3D
Object-Centered Representations

In this section, we show that a 3D object-centered shape inference model

can account for the viewpoint-dependency of visual object recognition. We

first discuss why 3D object-centered shape representations do not necessarily

imply viewpoint-invariant recognition. Then we replicate an influential ex-

perimental finding regarding viewpoint-dependency with our shape inference

model, and show that viewpoint-dependency of visual object recognition does

not rule out probabilistic 3D object-centered shape representations.

Experiments showing that people’s object recognition can be viewpoint

dependent are often presented as evidence against shape perception models

that use 3D object-centered representations. The reasoning underlying this

claim is as follows. Because the 3D object-centered model of an object can

be mentally rotated, recognition performance will not depend on viewpoint

as long as a test object’s true 3D shape representation can be extracted from

the test viewpoint (Bulthoff & Edelman, 1992). In other words, differences

between the viewpoint of an object at the time of study and the viewpoint

of an object at the time of test can always be compensated for via mental

rotation.

To us, this claim is poorly conceived. The claim assumes that the same

3D shape representation is extracted regardless of viewpoint. This is not

necessarily the case and, in fact, is not perceptually (or computationally)
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plausible. Different views of an object are not equally informative about the

object’s shape. Some properties of an object’s shape may be easy to infer

(i.e., can be inferred with low variance or high confidence) from a partic-

ular viewpoint, but difficult to infer (i.e., are inferred with high variance)

from other viewpoints. Importantly, shape properties for one portion of an

object might be easy to infer from an image of the object at a particular

viewpoint, whereas the properties for another portion of the object are dif-

ficult to infer from the same image. A good illustration of this point is the

canonical view effect. Previous research shows that even if all views of an

object are presented an equal number of times during training, recognition

performance depends significantly on viewpoint (Edelman & Bulthoff, 1992;

Bulthoff, Edelman, & Tarr, 1995). These findings suggest that not all views

of an object are equally informative. Therefore, one should generally expect

that an observer will infer different 3D shape representations from different

views of the same object. If so, one should expect object recognition to

be viewpoint dependent. Furthermore, as long as the 3D shape inference

procedure extracts more similar representations for closer views, one should

expect object recognition to fall off gradually with viewpoint. That is, object

recognition should be best when study and test viewpoints are most simi-

lar, should be moderate when these viewpoints are moderately similar, and

should be worst when these viewpoints are least similar.

To illustrate these points, consider the three views of a paperclip ob-

ject in Figure 4.2. To us, it seems intuitive that an observer’s 3D shape



128

(a) (b) (c)

Figure 4.2: Three views of a paperclip object. Viewpoint differences between
(a)-(b), (a)-(c), (b)-(c) are 10◦, 70◦, 80◦ respectively.

representations for the first and second views will be more similar than the

representations for the first and third views, and hence recognition will be

viewpoint-dependent. We show below that is, in fact, the case for a shape

inference model that infers 3D object-centered shape representations. There-

fore, the use of probabilistic 3D object-centered shape representations does

not imply viewpoint-invariant object recognition.

To our knowledge, similar points have been made by a few researchers in

the past. Z. Liu, Kersten, and Knill (1999) and Tjan and Legge (1998) argued

that not only the internal representation of shape but also the information

available in the stimuli mattered for viewpoint-dependency of recognition.

They presented ideal observer analyses and experimental findings that sug-

gest, depending on the complexity of a stimulus set, one would expect object

recognition to be more or less viewpoint-dependent. Even though such find-

ings can explain why recognition performance for stimuli like paperclips are
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much worse than say objects made up of Biederman’s geons, they do not

speak to the issue of why recognition performance for a given object should

get worse as the difference in viewpoint between the training and test views

increases. Similarly, in a study investigating whether object representations

are viewpoint-dependent, Z. Liu (1996) argued that a viewpoint-independent

representation can also give rise to viewpoint-dependent performance. This

point was repeated in a more recent article (Ghose & Liu, 2013). Unfor-

tunately, neither of these articles provided an account of how this might

happen. Bar (2001) also argued that viewpoint-dependency is not neces-

sarily an indication of view-based representations. Bar (2001) presented an

argument based on neural priming to show how object-centered representa-

tions can lead to viewpoint-dependent recognition. Although neural priming

might be a plausible explanation for viewpoint-dependency, here we argue for

an inference-based account where viewpoint-dependency follows from prob-

abilistic inference of shape.

We show how our shape inference model accounts for viewpoint-dependency

by replicating the main experimental findings from an influential study by

Bulthoff and Edelman (1992). During training, subjects viewed two ani-

mations of a paperclip object. In one animation, the viewpoint of the ob-

ject oscillated between −15◦ and 15◦ around the vertical axis. In the other

animation, the viewpoint oscillated between −60◦ and −90◦. During the

test phase, subjects were presented with static test images in three con-

ditions, and judged whether each test image depicted the same object as
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observed during training. In the interpolation condition, test viewpoints

spanned the range between the two training viewpoints in 15◦ increments

(i.e., 0◦,−15◦, . . . ,−90◦ around the vertical axis) . In the extrapolation con-

dition, test viewpoints spanned the range outside the training viewpoints in

15◦ increments (i.e., 0◦, 15◦, . . . , 90◦ around the vertical axis). Finally, in the

orthogonal condition, test viewpoints differed from training viewpoints be-

cause they were rotations around the horizontal axis (0◦, 15◦, . . . , 90◦ around

the horizontal axis). Bulthoff and Edelman (1992) argued that a view-based

model predicts slower and less accurate recognition as the object is rotated

away from its training views, but a recognition scheme using 3D object-

centered models would predict no effect of viewpoint as long as subjects were

able to extract the true 3D model from training images. They used paperclip

objects comprised of multiple tubular segments to make sure that the true

3D model can, in principle, be extracted from any viewpoint (similar to the

objects shown in Figures 4.2 and 4.3).

Computational model

For our simulations, we generated ten paperclip objects similar to the stim-

uli used by Bulthoff and Edelman (1992). Each object consisted of seven

segments, and each segment’s length was sampled from a normal distribu-

tion around a mean segment length. We started by placing one segment at

the origin. Two new segments pointing in randomly selected directions were

joined to this center segment, one on each side. These directions were se-
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θ = −90◦ θ = −75◦ θ = −60◦ θ = −45◦ θ = −30◦ θ = −15◦ θ = 0◦

θ = 15◦ θ = 30◦ θ = 45◦ θ = 60◦ θ = 75◦ θ = 90◦

α = 15◦ α = 30◦ α = 45◦ α = 60◦ α = 75◦ α = 90◦

Figure 4.3: All views of an object used in our viewpoint-dependency simula-
tions. θ refers to the angle around the vertical axis, and α refers to the angle
around the horizontal axis.

lected such that the angles between segments were neither too small nor too

large. We continued in this fashion by adding two segments to each end of

the object until an object had seven segments. An object depicted from all

simulated viewpoints is shown in Figure 4.3.1

Given the image of an object, our computational model infers the object’s

3D structure in an object-centered coordinate system. In the model, an

object is represented as a list of segment endpoint positions. For example, a

5-segment object shape S is represented as a list of six endpoint positions,

S = {~p1, ~p2, . . . , ~p6}, with |S| denoting the number of endpoints. (Although

objects in our simulations always contained 7 segments, this information was
1The full set of stimuli can be seen online at http://gokererdogan.github.io/

ShapePerceptionAsBayesianInference/.



132

not provided to the model. Instead, the model infers a posterior distribution

over object shapes, meaning that shapes with, for example, 6, 7, or 8 segments

might all be assigned non-zero probabilities.)

Prior distribution: In general, the model assumes that the number of

segments comprising an object is sampled from a uniform distribution over

integers in the interval [2, 12], and that the coordinates of endpoint posi-

tions (i.e., the components of each vector ~pi) are sampled from a uniform

distribution over [−0.5, 0.5]. However, without loss of generality, the model

assigns the middle segment of an object to lie along the horizontal axis and

to be centered at the origin. This enables the model to represent an object

in a viewpoint-independent manner—that is, in an object-centered coordi-

nate frame—and to easily “mentally” rotate the object to a canonical view

if necessary. These assumptions define a prior probability distribution over

possible object shapes:

P (S) ∝ 1

|S| − 1
. (4.1)

Likelihood function: To produce an image of shape S, we need to

specify the viewpoint from which it is viewed. We denote viewpoint with

~φ = (r, θ, α) using polar coordinates, and assume that the distance to the

origin r is fixed. The prior probability distribution over viewpoint is assumed

to be independent of shape S, and uniform over the sphere with radius r. The

visual “forward model” F : (S, ~φ) → I renders images by mapping a shape

S and viewpoint ~φ to image I. We implemented the forward model using
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the Visualization Toolkit (VTK; http://www.vtk.org), a software package

for 3D computer graphics, image processing, and visualization. Assuming an

observed image is corrupted by Gaussian pixel noise with variance σ2, the

likelihood of shape S and viewpoint ~φ is:

P (I|(S, ~φ)) ∝ exp

(
−||F(S, ~φ)− I||2F

σ2

)
(4.2)

where || · ||F denotes the Frobenius norm.

Posterior distribution: Combining the prior distribution and likeli-

hood function via Bayes’ rule, the posterior distribution of S and ~φ is:

P ((S, ~φ)|I) ∝ P (S)P (~φ)P (I|(S, ~φ)) (4.3)

where P (S) and P (I|(S, ~φ)) are given by Equations 4.1 and 4.2, respectively,

and P (~φ) is uniform. Samples from this distribution were obtained using

Markov chain Monte Carlo techniques (see Appendix 4.A.1 for details of the

sampling procedure).2 Figure 4.4 provides examples of samples for three

objects.

Modeling results

We evaluated the model as if it was a subject in Bulthoff and Edelman

(1992)’s experiment. During the training stage of the experiment, the model
2Implementation of our 3D shape inference model is available online at https://github

.com/gokererdogan/Infer3DShape/releases/tag/ro3Dpaper.
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Figure 4.4: Examples of samples from the inferred posterior distribution
P (S|Itrain) for three objects. Each row depicts one object and three samples.
The leftmost column shows the object from viewpoint θ = 0◦. Here, Itrain

consists of six views of an object from θ ∈ {−90◦, −75◦, −60◦, −15◦, 0◦,
15◦}.
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inferred the posterior distribution P ((S, ~φ)|Itrain) over 3D shapes from the

set of training images. The training images Itrain consisted of six images at

views θ ∈ {−90◦,−75◦,−60◦,−15◦, 0◦, 15◦}. On a test trial, the model was

presented with test image Itest, and it judged whether the image depicted the

same object as observed during training.

We implemented this decision process as a comparison between two prob-

abilities: (i) the probability that the test image depicted the same ob-

ject as depicted in the training images, versus (ii) the probability that the

test image depicted any other object. These probabilities were formalized

as P (Itest|I = Itrain) and P (Itest|I 6= Itrain), respectively. We estimated

P (Itest|I = Itrain) as follows:

P (Itest|Itrain) =

∫
P (Itest|S) P (S|Itrain) dS

≈ 1

N

N∑
i=1

P (Itest|Si) (4.4)

where Si is a sample from the posterior P (S|I = Itrain).3 Because an object

can be depicted from any viewpoint on a test trial, viewpoint needs to be

taken into account when calculating P (Itest|S). In our simulations, we found

the viewpoint that best aligned the object with the observed image (i.e., we

used P (Itest|S) = max~φ P (Itest|S, ~φ)). To find the best viewpoint, we carried

3We sampled from the posterior P ((S, ~φ)|I = Itrain) but we ignored viewpoint ~φ and
treated S as a sample from P (S|I = Itrain). This is equivalent to approximating P (S|I)
with P ((S, ~φMAP)|I). Since P ((S, ~φ)|I) is highly peaked around the MAP sample, this
is a very good approximation. Our results do not change if we integrate out ~φ to get
P (S|I) =

∫
p(S, ~φ|I)d~φ instead of using the approximation.
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out a search over the whole viewing sphere (θ and α were each discretized

into 5◦ bins).

We calculated P (Itest|I 6= Itrain) in a similar manner:

P (Itest|I 6= Itrain) =

∫
P (Itest|S) P (S|I 6= Itrain) dS. (4.5)

To approximate this integral, samples from the posterior P (S|I 6= Itrain) are

needed. Because it is unlikely that any shape except the true shape was

depicted in the training images, P (S|I 6= Itrain) is close to the prior P (S).

Using this approximation, P (Itest|I 6= Itrain) can be estimated as follows:

P (Itest|I 6= Itrain) ≈
∫
P (Itest|S) P (S) dS

≈ 1

M

M∑
i=1

P (Itest|Si) (4.6)

where Si is a sample from prior P (S).4

Bulthoff and Edelman (1992) reported error rates in their experiment. As

shown in Figure 4.5a, subjects’ performances were excellent in the interpola-

tion condition, but these rates were significantly higher in the extrapolation

and orthogonal conditions. Importantly, performances in the interpolation

condition were relatively unaffected by viewpoint. However, error rates rose
4In our simulations, we used an additional approximation based on the fact that for a

random shape Si, P (Itest|Si) is nearly proportional to exp (−||Itest||2F /2σ2) since there will
be little overlap between the image of a random shape and a test image (i.e., P (Itest|Si)
is nearly independent of Si). Simulations confirm that this approximation is in general
quite good—the results are virtually the same as when we approximate P (Itest|I 6= Itrain)
with samples from P (S).
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with the difference in viewpoint between training and test in the other con-

ditions. Performance was worst in the orthogonal condition. At first, this

might seem to be due to the fact that subjects observed two sets of views

varying along the horizontal axis during training, hence receiving more infor-

mation about side views of objects. However, Bulthoff and Edelman (1992)

ran a variant of their experiment where the training views varied along the

vertical axis, and subjects still performed worse for test views varying along

this axis. This finding suggests that people find it harder to generalize to

top/bottom views than to side views. To account for this finding, Bulthoff

and Edelman (1992) restricted their model’s generalization capability along

the vertical axis to be significantly less than what it is along the horizontal

axis.

To compare our model’s performances with those of the subjects in Bulthoff

and Edelman (1992)’s experiment, we need to calculate an error measure for

our model. Because an observer is expected to make more errors as the ob-

server becomes less confident about whether a test image depicts the train-

ing object, we used the posterior ratio P (Itest|I 6=Itrain)
P (Itest|I=Itrain) as an error measure.

For each test image in the three experimental conditions, this error measure

was calculated. The results are summarized in Figure 4.5b. Overall, our

model provides a good qualitative account of the experimental data. Its per-

formance is best in the interpolation condition and markedly worse in the

extrapolation and orthogonal conditions.5 Moreover, its performance in the
5Given that we used a uniform prior over viewpoint, the lack of difference in per-
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interpolation condition was relatively unaffected by viewpoint. However, its

error measure rose with the difference in viewpoint between training and test

in the other conditions.

Overall, these results show that viewpoint-dependency does not imply

that an observer is using 2D or viewpoint-dependent object representations.

Our model, using probabilistic 3D object-centered representations, accounts

for viewpoint-dependency of visual object recognition. Contrary to received

wisdom in the field, viewpoint-dependency does not provide compelling evi-

dence about whether object shape representations are 2D versus 3D, nor does

it provide evidence about whether these representations are view-dependent

or view-independent.

Behavioral Experiment and Model Comparisons

The previous section reported results indicating that it is erroneous to claim

that viewpoint-dependent visual object recognition suggests the use of view-

based shape representations. Indeed, either view-based or probabilistic 3D

object-centered representations can underlie viewpoint-dependency, partic-

ularly when such a representation is inferred from an image. The goal of

this section is to report results strengthening our hypothesis that people’s

formances between the extrapolation and orthogonal conditions is unsurprising. We could
have captured this difference by assuming a non-uniform prior over viewpoint (like Bulthoff
and Edelman (1992) do in their view-approximation model). However, we chose not to do
so because our primary aim here is not to capture this difference but to account for view-
dependency (i.e., increases in error rate with increases in viewpoint difference between
training and test views).



139

(a)

(b)

Figure 4.5: (a) Experimental results from Bulthoff and Edelman (1992). (b)
Simulation results from our model.
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shape representations of unfamiliar objects are probabilistic, 3D, and object-

centered. We present a behavioral experiment, along with an extensive eval-

uation of a diverse array of computational models based on how well the

models account for the experimental data. We show that our probabilistic,

3D, object-centered inference model captures subjects’ performances better

than all other models.

Behavioral experiment: Stimuli and procedure

Experimental stimuli were objects built from rectangular blocks. They were

generated as follows. Each object started with a single fixed-size block cen-

tered at the origin. Then, one or more faces of this root block were randomly

selected, and one or more new blocks with randomly sampled sizes were con-

nected to the selected faces. This procedure was applied recursively—after

child blocks were connected to a parent block, each child became a parent and

had one or more child blocks connected to it. In practice, a parent block was

restricted to have at most three child blocks. We also restricted the depth

of each object to three (i.e., an object consisted of its root block, the root

block’s child blocks, and the root block’s grandchild blocks). A sample object

and its corresponding shape tree representation are shown in Figure 4.6.

We generated 10 target objects in this manner. Comparison objects with

shapes similar, but not identical, to target objects were also created. They

were generated by applying the following four manipulations to each target

object. Each manipulation was applied at levels two and three in the shape
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(a) (b)

P(1)

P(2)

P(4) P(5)

P(3)

P(6) P(7)

Figure 4.6: (a) Example of an object. The numbers on parts refer to the
part numbers in its shape tree. (b) The shape tree representing the object
in (a).

trees, resulting in 8 comparison objects generated from each target object.

When using the change part size manipulation, one object part was randomly

selected, and its size was set to a random value. This operation might change

the positions of the selected part’s descendants. When using the change

connecting face of part manipulation, we again picked one part randomly,

picked a new connecting face for it from the unoccupied faces of its parent

part, and moved the part to this new location. Again, this manipulation

moves all descendants of the selected part. The add part manipulation added

one part randomly to the desired level in the tree. For example, to add a new

part to level 3, we picked one of the parts at level 2 randomly, picked one of

its unoccupied faces randomly, and connected a new part with a random size

to the chosen face. When using the remove part manipulation, we picked

one part randomly and removed it and all of its descendants. Figure 4.7
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Target object change size, d=2 change size, d=3 move face, d=2 move face, d=3

add part, d=2 add part, d=3 remove part, d=2 remove part, d=3

Figure 4.7: Target object (upper left) and its 8 comparison objects. The
comparison objects were created using the four manipulations applied at
levels two and three of the target object’s shape tree. For example, “add
part, d=2” refers to the object created by adding a new part to depth 2 in
the shape tree.

illustrates a target object and examples of its 8 comparison objects.6

The experiment used a shape similarity judgment task. On each trial,

a subject viewed images of three objects, one target and two comparisons.

Subjects judged which comparison was most similar in shape to the target.

Images were rendered from a random viewpoint on the 45◦ parallel (α =

45◦) along the viewing sphere using Blender (http://www.blender.org), a

3D graphics and animation software package. Each subject performed 100

trials, 16 of which were catch trials where one of the comparison objects was

identical to the target. Forty-one subjects participated in the experiment,

but data from five subjects were discarded because they failed to achieve 85%
6The full set of stimuli can be seen online at http://gokererdogan.github.io/

ShapePerceptionAsBayesianInference/.
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accuracy on catch trials. Subjects participated in this web-based experiment

via Amazon Mechanical Turk.

Competing computational models

A diverse array of models of shape perception was simulated, and each model

was evaluated based on how well it accounts for subjects’ responses in our

experiment. We include the following models in our evaluation.

Pixel-based model: The pixel-based model compares two objects by

calculating the Euclidean distance between the pixel values in their images.

This model can be regarded as an implementation of a view-based hypothesis

that stores images as views. Subjects in our experiment saw each object only

from a single viewpoint, and thus the shape representation for an object in

the pixel-based model consists of a single image. Because there is only one

image stored for each object, the pixel-based model is also an implementation

of a particular version of Poggio and Edelman (1990)’s view-approximation

model that works directly on raw images.

Alignment-based models: Another set of models that use 2D represen-

tations is motivated by the recognition-by-alignment approach (S. Ullman,

1989). Here, images of objects are aligned before they are compared. This

alignment process requires a set of image features to be labeled in the images.

The best alignment is calculated on the basis of these features. The dissimi-

larity between two images is taken to be the Euclidean distance in pixel space

between the images after alignment. In our simulations, we used the corners
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of the root block as features for alignment since these corners are present in

every image. One can imagine allowing various types of transformations in

the alignment process. Here we tried two transformations: one allowing only

scaling and translation, and another allowing any affine transformation.

We also tried a third method that does not do any alignment. Instead,

this no-alignment model simply calculates the Euclidean distances between

feature lists (i.e., the coordinates of corners of root blocks). The model is an

implementation of a view-based hypothesis that uses a simple feature-based

representation for views. For this reason, the model is also referred to as a

naive feature-based model. Since Poggio and Edelman (1990)’s original view

approximation model worked on similar feature-based representations, the

no-alignment model also provides a test of the view approximation model.

HMAX: An influential example of a feature-based model is HMAX

(Riesenhuber & Poggio, 1999).7 The model is a type of artificial neural net-

work consisting of four layers of units: S1, C1, S2, C2. We used the outputs

from the C1 and C2 layers (as is generally done in previous work evaluating

HMAX models). The particular implementations we used applied feature

extraction at the C1 layer at eight different spatial scales. We treated each

scale as a separate model, and also combined all eight scales into a single C1

layer representation. Our HMAX implementation also used eight different

patch (i.e., feature) sizes at the C2 layer. Again, we treated activations for
7We used the implementation provided by the authors at http://maxlab.neuro

.georgetown.edu/docs/hmax/hmaxMatlab.tar
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each of these patch sizes as a separate model, but also combined all of these

models to form a single C2 layer representation. Therefore, in total, there

are 18 versions of HMAX (8 scales for C1, all scales combined, 8 patch sizes

for C2, and all patch sizes combined). We used the feature dictionary pro-

vided with the HMAX implementation. These features were extracted from

random natural images, and are intended as a universal set of features. To

get feature-based representations for each object in our experiment, we fed

each image of an object to an HMAX model and calculated the responses of

the C1 and C2 layers. These responses constitute objects’ shape represen-

tations. We used Euclidean distance to compute dissimilarities between two

such shape representations.

Convolutional neural networks: We evaluated two convolutional neu-

ral networks (CNNs) that are regarded as state-of-the-art computer vision

systems: AlexNet (Krizhevsky et al., 2012) and GoogLeNet (Szegedy et al.,

2014).8 AlexNet is an eight-layer (five convolutional, three fully connected

layers) CNN trained on 1.2 million images in the ImageNet dataset. AlexNet

achieved the best performance on the 2012 ImageNet Large Scale Visual

Recognition Challenge, and was in large part responsible for the recent surge

of interest in deep neural networks. We treated each of its 14 layers (making

the three max-pooling and two normalization layers explicit) as a separate

model. Using the standard terminology in the deep neural network liter-

ature, these layers are: conv1, pool1, norm1, conv2, pool2, norm2, conv3,
8We use the pre-trained networks provided by the Caffe framework (Jia et al., 2014).
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conv4, conv5, pool5, fc6, fc7, fc8, and prob. The set of unit activations in

the last layer, prob, is a 1000-dimensional vector encoding the probability of

belonging to each of 1000 object categories in ImageNet. The second CNN

that we tested was GoogLeNet by Szegedy et al. (2014). This model set

the state-of-the-art performance on the 2014 ImageNet Large Scale Visual

Recognition Challenge. GoogLeNet has 22 layers (with an additional five

pooling layers). Our simulations used 16 layers: pool1, conv2, inception3a-b,

pool3, inception4a-e, pool5, inception5a-b, pool5, loss3 and prob. To make

predictions from AlexNet and GoogLeNet, we input each image to the net-

works and performed a feedforward pass to calculate each layer’s responses.

The dissimilarity between two objects is computed as the Euclidean distance

between vectors of these responses.

Structural distance-based model: We implemented a structural distance-

based model that calculates object similarity using the structural descriptions

of objects. Unfortunately, there are no concrete proposals in the literature

for how this should be done. Because the objects in our experiment can

be represented as shape trees (see Figure 4.6), one plausible way is to use

the distance between these trees as a measure of dissimilarity. We used one

such measure referred to as tree-edit distance (K. Zhang & Shasha, 1989).

Using this measure, the distance between two shape trees is the total cost of

operations needed to turn one tree into the other.9 Tree-edit distance allows
9Tree-edit distance considers two nodes to be equal if their labels are the same. In the

case of our shape trees, this means that two P nodes need to have the same connection
face to be considered equal.
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add-node, remove-node and change-node operations, and we assumed that

each operation has equal cost.

Shape skeleton model: As discussed above, Feldman et al. (2013)

proposed to represent the 2D shape of a 2D object as a shape skeleton.

This skeleton is inferred from an image silhouette using Bayesian inference.

To calculate similarities between shapes, we first extracted the boundaries

of objects in images to create 2D silhouettes. Then we used Feldman et al.

(2013)’s model10 to find the maximum-a-posteriori (MAP) shape skeleton for

each silhouette. The similarity between two shapes can be formalized as the

probability of observing the image for one shape given the image for the other

shape. For example, the similarity between the target It and a comparison

Ic can be evaluated by calculating either P (It|Ic) or P (Ic|It). P (It|Ic) (and

similarly P (Ic|It)) can be approximated on the basis of an estimated MAP

shape skeleton for each shape as follows:

P (It|Ic) ≈ P (It|SkMAP)P (SkMAP|Ic) (4.7)

where SkMAP denotes the MAP skeleton for Ic. We tried three similarity

measures based on these probabilities: P (It|Ic), P (Ic|It), and their average

1
2
[P (It|Ic) + P (Ic|It)].

3D shape inference model: Lastly, we describe our proposed model

that treats shape perception as Bayesian inference of 3D shape in an object-
10We used the implementation provided by the authors at http://ruccs.rutgers.edu/

images/ShapeToolbox1.0.zip
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centered coordinate system. To specify our model, we need to describe

the representation for object shape as well as the generative process or

forward model mapping these representations to images. We assume that

shape representations consist of the positions and sizes of a collection of

rectangular blocks. Each object S is represented by a tuple (T,M) where

T is a string from a probabilistic shape grammar with production rules:

P → P | PP | PPP | ε. In these rules, P is a non-terminal symbol and ε

is a terminal null symbol. In a string T generated by this grammar, each P

symbol corresponds to an object part (i.e., a rectangular block). Hence, the

string T characterizes the parent-child relations between parts in an object.

The grammar follows closely our stimulus generation procedure, with each

part being constrained to have at most three children. The sizes and positions

of each part are specified in spatial model M . The spatial model associates

a size s ∈ R3 and a connecting face of a block fi ∈ {1, 2, 3, 4, 5, 6} with each

P node in T (see Figure 4.8 for an example object and its associated (T,M)

shape representation).

The prior probability of shape S is:

P (S) = P (T )P (M |T ). (4.8)

The probability of producing T from the shape grammar, P (T ), is calculated

as follows:

P (T ) =
∏
n∈P

P (n→ ch(n)) (4.9)
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where P is the set of P nodes in tree T , ch(n) are the children of node n, and

p(n→ ch(n)) is the probability of the production rule n→ ch(n). We assume

production probabilities to be uniform (i.e., each of the four production rules

has a probability of 0.25) which simplifies P (T ) to:

P (T ) =
1

4|P|
. (4.10)

The probability for spatial modelM , P (M |T ), consists of the probabilities of

picking part sizes and connecting faces. Because we assumed part sizes to be

uniform over the interval [0, 1], we only need to focus on the probabilities for

connecting faces. For a part with k available faces and c children, there are(
k
c

)
possible combinations of face assignments to its children. Since we have

six empty faces for the root P node and five empty faces for the remaining P

nodes (because one face is occupied by the parent), the probability of spatial

model M is

P (M |T ) =
1(

6
|Oroot|

)∏
n∈{P\root}

(
5

(|On|−1)

) (4.11)

where Oi refers to the set of occupied faces of node i.

Given a shape S and a viewpoint ~φ, forward model F : (S, ~φ)→ I maps

3D shape representations to 2D images. As above, we used the Visualiza-

tion Toolkit software package to implement the forward model. Assuming

Gaussian noise on images, the likelihood function L(H, θ; I) is:

L(S, ~φ; I) = P (I|S, ~φ) ∝ exp

(
1

σ2
||I −F(S, ~φ)||2F

)
(4.12)
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where σ2 denotes the variance of the noise on I and || · ||F is the Frobenius

norm.

The posterior distribution over shapes given an image can be calculated

via Bayes’ rule:

P (S, ~φ|I) ∝ P (I|S, ~φ)P (S)P (~φ). (4.13)

We assumed that P (~φ) is a uniform distribution, and that viewpoint ~φ is

independent of shape S. We sampled from this posterior using MCMC tech-

niques (see Appendix 4.A.2 for details). Figure 4.9 shows samples from the

posterior over shapes for various objects in our experiment.

To calculate the similarity between target and comparison objects, we

evaluated how likely it is to observe the image for one object given the im-

age of the other object. Denoting the images for target and comparison

by It and Ic, respectively, we calculated three similarity measures: P (It|Ic),

P (Ic|It), and their average. We calculated P (Ic|It) as follows (and similarly

for P (It|Ic)):

P (Ic|It) =

∫
P (Ic|S, ~φ)P (S|It)P (~φ)dSd~φ. (4.14)

In a similar vein to Equation 4.4, the value of this integral was approximated

using samples from P (S|It).
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(a) (b)

P(1)

P(2)

P(4)

ε

P(3)

P(5)

ε

(c)

Part Id Size Conn. face
P1 [0.75, 0.50, 0.50] n/a
P2 [0.64, 0.18, 0.45] 3
P3 [0.14, 0.28, 0.23] 2
P4 [0.37, 0.19, 0.18] 1
P5 [0.13, 0.24, 0.15] 1

Figure 4.8: (a) An example object. The numbers on parts refer to the part
numbers in its parse tree. (b) Parse tree T associated with the object in
(a). (c) Spatial model M associated with the object in (a). “Conn. face”
is shorthand for “connection face” (i.e., the parent’s face to which a part is
connected).
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Figure 4.9: Samples from the posterior over shapes for various objects in
our experiment. Each row contains two sets of one object followed by two
samples.
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Simulation results

For each computational model described above, we calculated its predictions

as follows. For each simulated trial, we computed the similarities between a

target object and each comparison object, and used the most similar compar-

ison as a model’s prediction. We evaluated the performance of each model

by calculating the percentage of trials in which a model and our experimen-

tal subjects made the same judgment (i.e., they picked the same comparison

object as most similar to the target). The results are shown in Figure 4.10.

Clearly, our proposed computational model significantly outperformed

all other models (particularly the version whose similarity measure averaged

p(It|Ic) and p(It|Ic); binomial test, p < 0.005 for all comparisons). The

pixel-based (i.e., view-based) model performed at 58%. Even though this

is significantly better than chance, it still lags far behind our model’s per-

formance of 72%. Similarly, the best alignment-based model only reached

an accuracy of 59%.11 The structural distance-based model lagged even the

pixel-based model at 54% accuracy, which is not significantly better than

chance. Similarly, the best version of the shape skeleton model performed

worse than the pixel-based model with 56% accuracy (with similarity mea-

sure based on P (Ic|It)). However, this performance is significantly better
11Interestingly, allowing only translation and scaling transformations led to better per-

formance than allowing any affine transformation. This might seem implausible because
translation and scaling transformations are special cases of affine transformations. How-
ever, the alignment-based method simply finds the transformation that aligns two images
as well as possible. This is not necessarily the alignment that makes the Euclidean dis-
tances between images reflect subjects’ judgments.
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than chance (p = 0.035). The best version of HMAX also performed worse

than the pixel-based model and naive feature-based model (i.e., no alignment

model) with an accuracy of 57% (with layer C1, s=5). Convolutional neural

networks (CNNs) performed slightly better than pixel-based and alignment-

based models. The best version of AlexNet reached an accuracy of 62% using

its output layer prob, and the best version of GoogLeNet achieved 64% us-

ing layer inception5a. However, neither of these accuracies are significantly

better than the pixel-based model’s performance (binomial test, p > 0.05).

We also looked at the performance of each model on trials with high

between-subject agreement. Even though average agreement between sub-

jects was high (75%), it might be unfair to expect models to predict subjects’

judgments on trials when subjects did not clearly prefer either comparison

object significantly more than the other. The following analysis focuses on

“high confidence” trials where at least 80% of subjects picked the same com-

parison object. Model accuracies on these high-confidence trials are shown in

Figure 4.11. Our model significantly outperformed all other models with an

accuracy of 87% (p < 0.001 for all comparisons). Pixel-based and alignment-

based models achieved accuracies of 62% and 64%, respectively. Both of

these values are significantly better than chance (p = 0.01 for pixel-based;

p = 0.002 for alignment-based). Similarly, the structural distance-based

model and shape skeleton model achieved an accuracy equal to that of the

pixel-based model at 62%. The best version of HMAX performed at 57%

which is not significantly different from the performance of either the pixel-
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Figure 4.10: Predictions accuracies for each model on all trials. Error bars
show SEMs estimated by a bootstrap procedure with 1000 replications. Note
that the y-axis starts from 0.4.
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based or alignment-based model. The best version of AlexNet reached an

accuracy of 73% (with layer prob) which is significantly better than both

pixel-based and alignment-based models (p = 0.005 for comparison with

pixel-based; p = 0.017 for comparison with alignment-based). However, the

best version of GoogLeNet reached an accuracy of 68% (with layer incep-

tion5b) which is not significantly better than the performance of either pixel-

based or alignment-based models (p = 0.11 for comparison with pixel-based;

p = 0.24 for comparison with alignment-based).

In the evaluations presented so far, object similarity was computed using

the Euclidean similarity metric for several models. What would happen,

however, if these models used a more powerful metric such as the Mahalanobis

similarity metric? Would their performances significantly improve? The

Euclidean metric is a special case of the Mahalanobis metric. Let ~rM(Ii)

denote a vector coding model M ’s shape representation based on image Ii.

The Mahalanobis metric for the similarity of shape representations based on

images Ii and Ij is:

[~rM(Ii)− ~rM(Ij)]
T Σ−1 [~rM(Ii)− ~rM(Ij)] (4.15)

where Σ is a covariance matrix. The Euclidean metric is obtained by setting

Σ to the identity matrix.

In the next analysis, we re-evaluated those models that previously used a

Euclidean metric by allowing the models to use a Mahalanobis metric. For
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Figure 4.11: Predictions accuracies for each model on only high confidence
trials. Error bars show SEMs estimated by a bootstrap procedure with 1000
replications. Note that the y-axis starts from 0.3.
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each model, the covariance matrix Σ was obtained as follows. Subjects’ judg-

ments in our experiment can be thought of as relative similarity constraints.

For example, if subjects picked object Oj to be more similar to Oi than Ok is,

this can be characterized by a constraint of the form s(Oi, Oj) > s(Oi, Ok),

where s measures similarity between two objects. Using these constraints,

it is possible to learn a Mahalanobis metric (i.e., learn a covariance matrix

Σ) that satisfies as many of these constraints as possible. This problem is

known as “metric learning” in the literature on Machine Learning (Kulis,

2013) where it is treated as an optimization problem that can be solved

by iterative methods (see Appendix 4.A.3 for details on how we solved this

problem).

To evaluate each model, 70% of subjects’ similarity judgments selected at

random were placed in a training set and the remaining judgments formed

a test set. Using the training set, a model learned a Mahalanobis metric,

and then this model was evaluated using the test set. This procedure was

repeated 50 times to get a performance estimate for each model. We tried

both diagonal and low-rank Σ matrices with varying rank values and re-

port the best results. Table 4.1 shows the performances on all trials for the

pixel-based model, the no-alignment (naive feature-based) model, HMAX,

AlexNet, and GoogLeNet. (Recall that metric learning cannot be applied

to the shape skeleton models, to the structural distance-based models, and

to our proposed model because these models do not use vectors to represent

shapes.)
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Model Metric type Accuracy Accuracy w/o metric learning
Pixel-based low rank, r=10 0.566 0.582
Naive feature-based diagonal 0.568 0.575
HMAX (C2, s=3) diagonal 0.595 0.568
AlexNet (prob) low rank, r=20 0.660 0.621
GoogLeNet (inception5b) low rank, r= 20 0.633 0.639

Table 4.1: Best metric learning prediction accuracies on all trials.

Model Metric type Accuracy Accuracy w/o metric learning
Pixel-based low rank, r=10 0.698 0.616
Naive feature-based diagonal 0.648 0.642
HMAX (C1, s=6) diagonal 0.714 0.567
AlexNet (prob) low rank, r=5 0.752 0.733
GoogLeNet (inception5b) diagonal 0.715 0.683

Table 4.2: Best metric learning prediction accuracies on high-confidence tri-
als.

Metric learning seems to help only AlexNet and, to a lesser extent, HMAX.

However, neither of these increases in performance are statistically significant

(p = 0.18 and p = 0.37 respectively). Importantly, our proposed computa-

tional model still outperforms all other models significantly (p = 0.03 for

comparison with AlexNet). If we focus on only high confidence trials (see

Table 4.2), metric learning improves the performances of all models, albeit

not significantly for any model except HMAX (p > 0.05 for all other compar-

isons). Again, our 3D shape inference model is still significantly better than

all other models (p = 0.003 for comparison with AlexNet). These results

show that—even if we fit the similarity metric used by competing models to

subject data—our shape inference model still provides a better account of

subjects’ judgments.

We believe that our results are significant in multiple respects. First,
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our results suggest that people’s shape representations for unfamiliar objects

code 3D, rather than 2D, shape properties. Models that use 2D representa-

tions (i.e., pixel-based, alignment-based, and shape skeleton models)12 were

far inferior to our 3D shape inference model. Even if we allowed these models

to fit their similarity metrics to subjects’ data, our model still significantly

outperformed them. These results strongly suggest that people do not rep-

resent shape for unfamiliar stimuli using 2D representations.

Second, our results raise doubts as to the promise of feature-based mod-

els. Even though these models tended to perform better than other models,

they were still significantly behind our 3D shape inference model. This result

is especially interesting for CNNs, which have attracted interest in the cogni-

tive science and neuroscience communities as good models of biological visual

systems. Their poor performance at accounting for our experimental data

suggests that these models might be representing visual objects in a manner

that is different from how people represent visual objects. Further evidence

for this claim is provided by studies showing that CNNs are easily fooled

by images that seem indistinguishable or unrecognizable to the human eye

(Nguyen, Yosinski, & Clune, 2014; Szegedy, Zaremba, & Sutskever, 2013).
12It is worth emphasizing here that we base our claim on the 3D nature of shape repre-

sentations, not on a comparison between our model and deep neural networks because it
is unclear whether deep neural network models of shape perception use 2D or 3D repre-
sentations. We touched upon this difficulty of knowing how and why these models achieve
what they achieve in our review of feature-based models in Section 2. In fact, one line of
research (Patel et al., 2015) suggests that deep neural networks are implementing an ap-
proximate version of probabilistic inference in a hierarchical probabilistic rendering model,
similar to our proposed approach.
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We should stress that we are not arguing that feature-based models (e.g.,

convolutional neural networks) are fundamentally inadequate for modeling

biological visual systems. Since these models are universal approximators

(i.e., can implement any input-output mapping), given the right model ar-

chitecture, training data and optimization procedure, they can be trained to

capture any empirical data. For example, one might fine tune AlexNet and

GoogLeNet on the images of objects used in our experiment. However, there

are two problems with such an approach. First, subjects in our experiments

have never seen objects like the ones in our experiment either. Second, in

cognitive science and neuroscience literatures, these models are presented as

good models of our visual systems without any further training (Khaligh-

Razavi & Kriegeskorte, 2014; Cadieu et al., 2014). Our results here suggest

that this is not the case.

Third, the structural-description based model’s poor performance sug-

gests that it is not adequate to represent objects as lists of parts and the

coarse spatial relations among parts. Subjects’ similarity judgments in our

experiment seem to be based on finer-scale information than encoded in these

structural descriptions, including the probabilistic information inferred by

our proposed model.

Finally, our results have implications for the view-based hypothesis. Here

we tested several view-based models. Alignment-based models tested S. Ull-

man (1989)’s approach, and our pixel-based model and no-alignment models

tested two versions of Poggio and Edelman (1990)’s influential view approx-
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imation model. Our results show that none of the view-based models can

account for subjects’ judgments, and strongly suggest that view-based mod-

els do not provide good models of human shape perception.

Discussion

In summary, we have pursued an approach to investigating shape perception

based on the “visual perception as Bayesian inference” framework. We hy-

pothesized that shape perception of unfamiliar objects is well characterized as

statistical inference of 3D shape in an object-centered coordinate system. The

article provided evidence for this hypothesis along two lines. It first showed

that a shape inference model that uses probabilistic, 3D, object-centered

shape representations can account for view-dependency. This is a surpris-

ing result because previous researchers have interpreted view-dependency as

incompatible with 3D, object-centered representations. Based on this re-

sult, we argued that view-dependency is not diagnostic of whether shape

representations are 2D versus 3D, nor is it diagnostic of whether these repre-

sentations are view-based versus view-independent. In addition, the article

reported the results of a behavioral experiment using a shape similarity task,

and compared the predictions of a diverse array of computational models to

the experimental data. We found that our proposed shape inference model

captures subjects’ behaviors better than competing models. In conjunction,

our experimental and computational results illustrate the promise of our ap-
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proach and suggest that people’s shape representations of unfamiliar objects

are probabilistic, 3D, and object-centered.

Research on the visual perception of object shape has a long history. How-

ever, in terms of understanding the representations and algorithms involved

in shape perception, it often seems as if we have made little progress (Peissig

& Tarr, 2007; Gauthier & Tarr, 2016). We believe this is largely due to a

lack of rigorous and quantitative approaches addressing the whole shape per-

ception process from images to behavior. For example, view-based hypothe-

ses rarely made commitments on the representation of individual views, or

structural description hypotheses never completely specified how structural

descriptions can be extracted from 2D images or how such descriptions can be

compared. Hence, it became difficult to test these hypotheses, since without

a clear specification of the whole perception process, their predictions were

subject to interpretation. We believe progress is possible only if we build rig-

orous computational models, and our study is significant because it presents

one such rigorous model of shape perception. As argued by Gauthier and

Tarr (2016), we need to move away from unproductive dichotomies such as

view-dependent versus view-invariant representations towards understanding

the nature of the representation and algorithms involved in shape percep-

tion, which ultimately will explain when and why view-invariant or view-

dependent performance is obtained. Our rigorous and quantitative approach

here enables us to do exactly that.

We believe our work here is also significant because it presents a con-
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ceptual framework for understanding shape perception in its totality, rather

than one aspect of it such as view-dependency or behavior on some single

task such as object recognition. For example, view-based models focused

almost exclusively on view-dependency of object recognition. Similarly, pop-

ular feature-based models are all models of object recognition. However,

there is much more to shape perception than view-dependency or mapping

images of objects to labels. We believe our approach is significant because it

addresses shape perception in its totality, not just one aspect of it. By treat-

ing shape perception as inference of 3D, object-centered representations, we

can explain not only view-dependency but also capture perceived similar-

ities between unfamiliar objects. This is possible because our framework

presents a generative model of shape perception, capturing how causes in

the world give rise to retinal stimulations. Such models are often contrasted

with discriminative approaches (such as popular feature-based models like

AlexNet and GoogLeNet) that are built for individual tasks (such as object

recognition) and cannot be easily adapted to new tasks (Lake et al., 2016).

Our work directly or indirectly addresses or raises a large number of

questions about the representation of object shape. Here we address several

of these questions.

Previous research in the psychology literature has focused on how people

might represent object shape, but has largely ignored the question of how peo-

ple might acquire these representations. Why does the hypothesis proposed

here emphasize that shape perception is a form of statistical inference? We
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believe that focusing on visual representations without also focusing on the

acquisition of these representations is misguided. For example, it led re-

searchers to develop theories of shape perception based on complete and

accurate 3D, object-centered shape representations despite the fact that the

acquisition of such representations is perceptually (and computationally) im-

plausible, especially from a small number of viewpoints. If one augments an

emphasis on representation with an emphasis on inference, one quickly real-

izes that people’s shape representations will rarely be complete and accurate.

For example, when a person views an object from a single viewpoint, the per-

son is likely to infer a relatively accurate representation of some portions of

the object but an inaccurate representation of other portions (e.g., portions

seen in the periphery, or portions that are partially or fully occluded). We

claim that this shape-inference problem underlies view-dependency.

The proposed computational model uses a specific approach, namely one

based on probabilistic shape grammars. Why adopt this approach? Our pro-

posed model uses a probabilistic shape grammar for several reasons. First,

a shape grammar characterizes knowledge of possible object parts and of

how parts might be combined to form objects. Part-based shape representa-

tions have previously received considerable theoretical and empirical support

in the psychology literature (Biederman, 1987; Hoffman & Richards, 1984;

Marr & Nishihara, 1978; Saiki & Hummel, 1998; Yildirim & Jacobs, 2013).

Second, we represent shape in a probabilistic manner because probabilistic

approaches are robust in noisy and uncertain environments, and because
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probabilistic inference algorithms often show excellent performances (as ev-

idenced by the tremendous progress in the fields of Machine Learning and

Statistics over the past few decades). Third, we are reasonably optimistic

that the proposed model (or, rather, appropriately extended versions of the

model) will scale well to larger-scale settings. Although important challenges

obviously remain (too many to be mentioned here), our optimism stems from

the fact that probabilistic shape grammars (much more complex than the

one reported here) are regularly used in the Computer Vision and Computer

Graphics literatures to address large-scale problems (Amit & Trouve, 2007;

Bienenstock et al., 1997; Fu, 1986; Grenander & Miller, 2007; Talton et al.,

2012; Tu et al., 2005; L. Zhu, Chen, & Yuille, 2007; L. Zhu et al., 2009).

The proposed computational model seems restricted to part-based objects.

Is this a significant shortcoming? Can this model be scaled up to handle natu-

ral objects? Our main focus in this study was to argue for probabilistic, 3D,

and object-centered shape representations. We have chosen the particular

part-based shape representations used in this work because these are both

powerful enough to capture 3D geometry of the stimuli we used and simple

enough to make inference computationally feasible. Our mental shape repre-

sentations are no doubt much richer than the representations we used here.

A comprehensive understanding of object shape perception will require fu-

ture work on shape representations that are rich enough to represent natural

objects.
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It is notoriously hard to predict the future13 but we are hopeful that

our approach can be scaled up to deal with the full complexity of natural

objects. 3D volumetric representations similar to ours are being scaled to

larger and larger settings by computer vision researchers (Rezende et al.,

2016; Qi et al., 2016; Wu, Zhang, Xue, Freeman, & Tenenbaum, 2016).

Moreover, recent research in Machine Learning and Statistics is leading to

exciting advances in efficient inference in generative models. For example,

fast, discriminative models can be trained to speed up inference dramatically

in generative models (Kingma & Welling, 2014; Kulkarni, Yildirim, et al.,

2014; Yildirim, Kulkarni, Freiwald, & Tenenbaum, 2015).

The proposed computational model makes use of a powerful “forward model”

that maps shape representations and viewpoints to visual images. Is this real-

istic? We believe that it is. Our results show that people discount viewpoint

to a large extent when judging similarities which suggests such a forward

model is implemented by our visual systems. In other settings, this mapping

is referred to as visual imagery. Visual imagery is a type of mental simula-

tion which researchers are increasingly hypothesizing as playing an essential

role in human perception and cognition (Battaglia, Hamrick, & Tenenbaum,

2013).

The hypothesis proposed here is restricted to unfamiliar objects. Why?
13Minsky and Selfridge (1961) famously predicted that hill-climbing approaches will

never scale beyond the simple neural networks of the time. The current ubiquitous use
of the backpropagation algorithm for training deep neural networks illustrates how wrong
well-intentioned predictions can be.
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There are at least two reasons for this choice. First, our focus on unfamiliar

objects provides a setting where potential confounding factors are controlled.

Given past experience with familiar objects and their possible semantic sig-

nificance, it is difficult (perhaps impossible) to dissociate the representation

of shape from other possible relevant factors such as object category, object

function, and developmental and evolutionary significance. Indeed, previous

research clearly shows that conceptual knowledge affects visual perception

(Dixon, Bub, & Arguin, 1997; Gauthier, James, Curby, & Tarr, 2003; Gold-

stone, Lippa, & Shiffrin, 2001; Wiseman, MacLeod, & Lootsteen, 1985).

Second, and perhaps more important, we believe that it is unrealistic to ex-

pect that people’s visual systems use a single shape representation for all

objects. For example, given the significance of some familiar objects—such

as faces—and the difficulty of the associated visual recognition problem, it

seems likely that people have specialized mechanisms and representations for

these highly significant and familiar objects.

The hypothesis proposed here does not take into account an observer’s

task or goal. Is this a significant shortcoming? Yes and no. Consistent

with the “active vision” approach to the study of perception (Findlay &

Gilchrist, 2003; Hayhoe & Ballard, 2005), we believe that visual perception

is often task-based. At the same time, we also believe that people use mul-

tiple representations of object shape, including representations that are not

strongly dependent on task. Among other sources, evidence for this claim

comes from our own recent brain-imaging research showing that cortical re-
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gion LOC forms similar (and part-based) object shape representations when

people visually or haptically perceive an object’s shape in the absence of a

task (Erdogan, Chen, Garcea, Mahon, & Jacobs, 2016).

Object shape can be perceived visually but it can also be perceived hap-

tically. What is the relationship between visually-based and haptically-based

shape representations? We believe that behavioral and computational stud-

ies (Erdogan et al., 2015; Yildirim & Jacobs, 2013) as well as brain imaging

studies (Erdogan et al., 2016) suggest that people acquire and use modality-

independent object shape representations. These representations underlie

behavioral phenomenon, such as cross-modal transfer of shape knowledge

(Lacey & Sathian, 2011; Newell, 2010; Wallraven et al., 2014), and seem to

reside in neural region LOC as well as other regions (Amedi et al., 2001;

Erdogan et al., 2016; Grill-Spector et al., 2001; James et al., 2002). Our

own previous work has shown that a computational model related to the

one proposed here can infer shape representations from visual information,

from haptic information, or both, and can account for an array of experimen-

tal data on cross-modal transfer of shape knowledge (Erdogan et al., 2015;

Yildirim & Jacobs, 2013).

Is the proposed computational model psychologically plausible? Is it neu-

rally plausible? Cognitive scientists often make a distinction between ratio-

nal models and process models. Rational models are models of optimal or

normative behavior, characterizing the problems that need to be solved in

order to generate the behavior as well as their optimal solutions. In con-
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trast, process models are models of people’s behaviors, characterizing the

mental representations and operations that people use when generating their

behavior. Because our model’s inference algorithm is optimal according to

Bayesian criteria, and because this algorithm is not psychologically plausible,

the model should be regarded as a rational model, not as a process model.

Nonetheless, we believe that there are benefits to regarding the model as a

rational/process hybrid. Like rational models, our model is based on opti-

mality considerations. However, like process models, it uses psychologically

plausible representations and operations (e.g., grammars, forward models).

For readers solely interested in process models, we claim that our model

is a good starting point. As pointed out by others (Griffiths et al., 2012;

Sanborn et al., 2010), the MCMC inference algorithm used by our model can

be replaced by approximate inference algorithms (known as particle filter or

sequential Monte Carlo algorithms) that are psychologically plausible. Doing

so would lead to a so-called “rational process model”, a type of model that

is psychologically plausible and also possesses many of the advantages of

rational models.

In regard to neural plausibility, an important trend in computational

neuroscience is to interpret neural activity in terms of probabilistic represen-

tations and operations (Pouget, Beck, Ma, & Latham, 2013). We, therefore,

regard our model as at least potentially neurally plausible.

What are some important areas for future studies? We have emphasized

the need to augment an emphasis on visual representation with an emphasis
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on the idea that shape perception is a form of statistical inference. This per-

spective leads to at least two areas for future research. First, any statistical

inference mechanism needs to contain inductive biases in order to be effec-

tive. Future research needs to study the biases that play a role when people

infer shape. These biases might take the form of “generic view” assumptions

(Freeman, 1996) or “simplicity” assumptions (Feldman, 2000; Feldman et al.,

2013; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Second, the

fact that our shape representations are the product of an inference process

means that these representations may be inaccurate or incomplete (high-

lighting an advantage of probabilistic representations which directly code

uncertainty). Here, we showed that an important consequence of this fact

is that our percepts are view-dependent. Future research will need to study

other perceptual consequences of our visual inference mechanisms.

Appendix to Chapter 4

Details of MCMC algorithm for viewpoint-dependency
simulations

In this appendix, we present the details of our Markov chain Monte Carlo

(MCMC) procedure for inferring posterior probability distributions over the

shapes of paperclip stimuli used in our viewpoint dependency simulations.14

14Implementations of the inference procedure for both paperclip and block stimuli are
available online at https://github.com/gokererdogan/Infer3DShape/releases/tag/
ro3Dpaper
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To sample from the posterior distribution P (S, ~φ|I) over shape representa-

tions given a 2D image, we use MCMC techniques (J. S. Liu, 2004). These

techniques produce samples from a desired probability distribution by con-

structing a Markov chain whose stationary distribution is the distribution

of interest. In our inference procedure, we use the Metropolis-Hastings

(MH) algorithm, a popular algorithm for constructing such Markov chains

(Metropolis et al., 1953; Hastings, 1970).

An MH algorithm proposes a new hypothesis H ′ based on the current

hypothesisH at each iteration, and accepts or rejects the proposed hypothesis

with some probability. This accept/reject probability, called the acceptance

ratio, is designed in such a way as to ensure that the stationary distribution

of the Markov chain is the distribution of interest. Denote the probability of

proposing hypothesis H ′ given the current hypothesis H with q(H ′|H) and

the distribution of interest with π(H). The MH acceptance ratio is:

a(H → H ′) = min

(
1,
π(H ′)q(H|H ′)
π(H)q(H ′|H)

)
. (4.16)

In our case, the target distribution π(H) is the posterior P (S, ~φ|I), and

we need to design a proposal function q to move efficiently in the space

of hypotheses. We use a mixture proposal (Tierney, 1994; Brooks, 1998)

that consists of multiple proposals where one proposal is picked randomly at

each iteration. Below we discuss each proposal function and its associated

acceptance ratio.
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Add/remove endpoint proposal: Given a shape S = {~p1, ~p2, . . . , ~p|S|}

consisting of |S| endpoints, the add/remove endpoint proposal adds or re-

moves a single endpoint. We allow only the “free” endpoints (i.e., ~p1 or ~p|S|)

to be removed, and a new endpoint can only attach to one of these free

endpoints. We calculate the probability for this proposal by considering the

probability of each step in the procedure for adding/removing an endpoint.

The add/remove endpoint proposal first randomly picks whether an add or

remove endpoint manipulation should be carried out. We set each manip-

ulation to be equally likely (i.e., P (add|H) = P (remove|H) = 0.5).15 For

a remove endpoint manipulation, the next step is to pick the endpoint to

remove. Since there are two free endpoints, one of these is picked at ran-

dom. For an add endpoint manipulation, again we first need to pick the free

endpoint. In addition, we need to pick the position (x′, y′, z′) of the new

endpoint. A random vector on the unit sphere is picked randomly and added

to the picked free endpoint to determine the position of the new endpoint.
15For some shapes, it might not be possible to add or remove a endpoint. For ex-

ample, we never allow shapes with no endpoints. Therefore, we cannot apply a remove
endpoint manipulation to a shape with only a single segment. In such cases, add and
remove manipulation probabilities need to be modified accordingly. Similar modifications
may be required for other steps in the add/remove endpoint proposal as well. See the
implementation of our model for details.



174

The proposal probabilities for add and remove endpoint manipulations are:

qadd(H ′|H) =

P (add|H) P (pick endpoint|H, add) P (x′, y′, z′|H, add, pick endpoint)

(4.17)

qremove(H
′|H) = P (remove|H) P (pick endpoint|H, remove). (4.18)

However, we cannot simply plug these into the MH acceptance ratio formula

because the add/remove endpoint proposal manipulations move between

spaces with different numbers of dimensions—shapes with different num-

bers of endpoints live in spaces with different number of dimensions. There-

fore, we use a variant of the MH algorithm called “reversible jump MCMC”

that can move between such spaces (Green, 1995). To see how it is applied

for our add/remove endpoint proposal, assume that we have a shape S =

{~p1, ~p2, . . . , ~p|S|} that consists of |S| endpoints, and we add a new endpoint

to get the proposed hypothesis S ′ = {~p′1, ~p′2, . . . , ~p′|S|, ~p′|S|+1}. Reversible

jump MCMC assumes that we have sampled random variable ~u to make the

number of dimensions equal in both hypotheses. In our case, we sampled

~u = (x′, y′, z′) ∈ R3 and added it to shape S (i.e., S = {~p1, ~p2, . . . , ~p|S|, ~u}).

We define a function h : ~p1, ~p2, . . . , ~u → ~p′1, ~p
′
2, . . . , ~p

′
|S|+1 that maps shape
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S to shape S ′. Then, the reversible jump acceptance ratio is:

a(S → S ′) = min

(
1,
π(S ′)q(S|S ′)
π(S)q(S ′|S)

∣∣∣∣∣det
(
∂(~p′1, ~p

′
2, . . . , ~p

′
|S|+1)

∂(~p1, ~p2, . . . , ~u)

)∣∣∣∣∣
)

(4.19)

where the rightmost term in this equation is the absolute value of the de-

terminant of the Jacobian of the mapping h. Since in our case h is the

identity function, its Jacobian is 1. Therefore, the acceptance ratio for the

add endpoint manipulation is:

a(H = (S, ~φ)→ H ′ = (S ′, ~φ)) = min

(
1,
π(H ′)qremove(H|H ′)
π(H)qadd(H ′|H)

)
(4.20)

where qadd and qremove are given by Equations 4.17 and 4.18, respectively.

The acceptance ratio for the remove endpoint manipulation from H ′ to H is

the inverse of the above expression.

Move endpoint proposal: This proposal picks one endpoint randomly

and moves it a random amount ~m ∈ R3 sampled from a normal distribution

N (0, σ2I). Hence, the proposal probability q(H ′|H) is:

q(H ′|H) ∝ exp

(
−
∑3

i=1m
2
i

2σ2

)
. (4.21)

Since this proposal is symmetric (i.e., q(H ′|H) = q(H|H ′)), the MH accep-

tance ratio is:

a(H → H ′) = min

(
1,
π(H ′)

π(H)

)
. (4.22)
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Rotate viewpoint proposal: This proposal changes the viewpoint ~φ =

(r, θ, α) from which a shape is viewed. We sample two random angles from a

von Mises distribution with mean zero and variance κ, and add these to the

polar coordinates θ and α. Since this proposal is symmetric, the acceptance

ratio is again given by Equation 4.22.

Details of MCMC algorithm for shape similarity task

In this appendix, we present the details of our MCMC inference procedure

for block stimuli used in our behavioral experiment. See Appendix 4.A.1 for

a short discussion of the Metropolis-Hastings algorithm. Similar to our infer-

ence procedure for paperclip stimuli, we use a mixture proposal that consists

of multiple proposals, one of which is picked randomly at each iteration.

Below we provide the details for each proposal procedure.

Add/remove part proposal: Let S = (T,M) denote a shape where

T refers to the parse tree associated with the shape, and M is the spa-

tial model that consists of one size vector ~si ∈ R3 and connecting face

fi ∈ {1, 2, 3, 4, 5, 6} for each P node in parse tree T . The add/remove part

proposal first randomly picks whether an add or remove manipulation will

be carried out. We assume each manipulation is equally likely. For a remove

part manipulation, a P node is picked randomly from the set R of P nodes

with no children, and this part is removed. For an add part manipulation,

a P node is picked randomly from the set A of P nodes that have fewer
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than three child P nodes. Then, a new child P node is added to the picked

P node. This requires randomly sampling a size ~s for the new part and a

connecting face f from the unoccupied connecting faces of its parent. The

proposal probabilities for add and remove manipulations are:

qadd(H ′|H) = P (add|H) P (pick part|H, add) P (~s) P (f |H, add, pick part)

(4.23)

=
1

2

1

|A|
1

(6− |OP |)

qremove(H
′|H) = P (remove|H) P (pick part|H, remove) (4.24)

=
1

2

1

|R|

where we assume P (~s) is uniform and use OP to denote the set of occupied

faces of the picked parent P part for add part manipulation.16 Similar to

the add/remove endpoint proposal for paperclip stimuli discussed above, we

cannot simply plug these proposal probabilities into the MH acceptance ratio

because hypotheses H and H ′ reside in spaces with different numbers of

dimensions. Therefore, we use the reversible jump MCMC algorithm. A

derivation similar to the one discussed for the add/remove endpoint proposal
16In some cases, it might not be possible to add or remove parts for a shape S. The

proposal probabilities need to be modified accordingly in such cases.
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shows that the acceptance ratio for the add part manipulation is:

a(H = (T,M, ~φ)→ H ′ = (T ′,M ′, ~φ)) = min

(
1,
π(H ′) qremove(H|H ′)
π(H) qadd(H ′|H)

)
(4.25)

where qadd and qremove are given by Equations 4.23 and 4.24, respectively.

The acceptance ratio for the remove part manipulation from H ′ to H is the

inverse of the above expression.

Change part size proposal: This proposal picks one P node randomly

from shape S = (T,M) and resamples its size ~s from a uniform distribution

over [0, 1]×[0, 1]×[0, 1]. Since this proposal is symmetric, the MH acceptance

ratio is given by Equation 4.22.

Change connecting face of part proposal: This proposal picks one P

node randomly from the set of P nodes whose parent P node has at least

one empty face. A new connecting face is picked randomly from the set of

empty faces of its parent, and the P node is connected to this new face.

Again, because this proposal is symmetric, the MH acceptance ratio is given

by Equation 4.22.

Rotate viewpoint proposal: This proposal changes the viewpoint ~φ =

(r, θ, α) from which a shape is viewed. In contrast to the proposal we used for

paperclip stimuli, here we allow rotations only around the vertical direction.

We sample a random angle from a von Mises distribution with mean zero
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and variance κ and add this to the polar coordinate θ. Since this proposal is

symmetric, the acceptance ratio is given by Equation 4.22.

Details of metric learning

In our evaluation of shape perception models, we use metric learning to fit

the representations learned by models to behavioral data. Metric learning

(Kulis, 2013) aims to learn a linear transformation of input data such that

the distances between data points in the transformed space capture simi-

larity/dissimilarity relations as well as possible. More formally, denote the

representation for stimuli i with ~ri, and the distance between stimuli i and j

with d(~ri, ~rj). Assume that we are given a set of relative similarity constraints

of the form d(~ri, ~rj) < d(~ri, ~rk). Our aim is to learn a linear mapping A such

that the distances dA(~ri, ~rj), dA(~ri, ~rk), etc., in this new space will satisfy as

many of these relative similarity constraints as possible. Here dA(ri, rj) is the

Mahalonobis distance between ~ri and ~rj which is given by (~ri−~rj)TA(~ri−~rj).

Because there might not be a linear mapping A satisfying all constraints, we

introduce slack variables ξijk to express the metric learning problem as the

following optimization problem (Schultz & Joachims, 2003):

min
A,{ξijk}

1

2
||A||2F + C

∑
ijk∈R

ξijk (4.26)

s.t. dA(~ri, ~rk)− dA(~ri, ~rj) ≤ 1− ξijk

ξijk ≥ 0
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where ||·||F denotes the Frobenius norm and C is a cost parameter controlling

how much we care about violations of the relative similarity constraints. We

consider two variants of this problem. In the first variant, we constrain

A to be a diagonal matrix. In that case, this problem becomes equivalent

to the one treated in Schultz and Joachims (2003). We find the optimal

diagonal A by solving the dual of the optimization problem using the L-

BFGS-B algorithm (Byrd, Lu, Nocedal, & Zhu, 1995) provided in the “scipy”

open-source package of scientific tools (Jones, Oliphant, Peterson, & others,

2001). The second variant constrains A to be a low rank matrix. This can

be achieved by writing A as GTG where G has fewer rows than columns. To

solve this problem, we rewrite it in the following unconstrained form:

min
G

1

2
||GTG||2F + C

∑
ijk∈R

max(0, dA(~ri, ~rj)− dA(~ri, ~rk) + 1) (4.27)

and again use L-BFGS-B to find the optimal A matrix. Implementations of

these metric learning methods are provided online at https://github.com/

gokererdogan/gmllib.
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Chapter 5

Discussion

In this thesis, we put forward a computational theory of shape perception

and tested it in a series of behavioral, neuroimaging, and computational

studies. We argued that shape perception is best understood as statisti-

cal inference over modality-independent, part-based, 3D, and object-centered

representations. In Chapter 2, we have shown that a computational shape

perception model based on our hypothesis accounts very well for within- and

cross-modal shape similarity judgments, and that our framework can explain

how modality-independent representations are acquired from sensory-specific

inputs. In Chapter 3, we turned to neuroimaging and have shown that visual

and haptic stimulation lead to similar neural activity in lateral occipital com-

plex (LOC). In addition, we have demonstrated that the part-based structure

of an object can be decoded from visual and haptic neural activations in LOC.

These findings provide evidence for multisensory and part-based shape rep-

resentations in the brain. Chapter 4 has focused on visual shape perception

and shown that a computational shape perception model based on statisti-
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cal inference over 3D, object-centered shape representations accounts better

for shape similarity judgments than other competing models. We have also

shown that such a model can explain view-dependency of object recogni-

tion, a finding that is usually taken as evidence against 3D, object-centered

shape representations. We believe, taken altogether, these studies present a

strong case for our hypothesis of shape perception as statistical inference over

modality-independent, part-based, 3D, and object-centered representations.

As we have remarked in previous chapters, the pieces of this hypothesis

appeared in earlier research on shape perception. Our shape representa-

tions are clearly inspired by volumetric and hierarchical representations of

Marr and Nishihara (1978); Biederman (1987). Our emphasis on modality-

independence is shared by earlier work (Yildirim & Jacobs, 2012, 2013). And

“perception as Bayesian inference” is a well-established approach in cognitive

science and especially in research on visual perception (Knill & Richards,

1996; Kersten & Yuille, 2003). However, what makes our work novel is the

combination of all these pieces and our emphasis on the algorithms as well

as the representations that take role in shape perception.1 For example, in

Chapter 4, we have seen that this emphasis on the whole shape perception

process allowed us to explain view-dependency of object recognition with 3D,

object-centered representations.
1A hypothesis on representation by itself is incomplete without an accompanying hy-

pothesis on algorithm, i.e., on how representations are used. This point was forcefully
made by Anderson (1978) in the context of analog vs. symbolic representations debate in
mental imagery.
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An important feature of our hypothesis here is that it uses rich, sym-

bolic shape representations that encode 3D geometry and are modality-

independent and compositional. Such representations can be contrasted with

the 2D and flat representations of view-based or some feature-based mod-

els. Exactly how rich our shape representations should be is a long-standing

question that featured prominently in various debates in cognitive science

(McClelland et al., 2010; Griffiths et al., 2010). We believe that the effi-

ciency and flexibility of perception call for rich, structured representations.

For example, our shape similarity experiment in Chapter 4 suggests that

people extract a rich representation of the 3D structure of an object even

from a single image. Similarly, previous research has shown that people can

learn new object concepts from just a few examples (Tenenbaum et al., 2011).

Such feats are possible only if we employ rich representations that impose

strong inductive biases on our generalizations. Perhaps an equally forceful

argument for rich representations can be made on the basis of the richness of

the external world and the diversity of the tasks we face. Research in shape

perception generally focused on one particular task, object recognition. How-

ever, our interactions with the world require more information than only the

identities of objects. Object shape is crucial not only for recognition but

also for scene understanding, motor planning and many other tasks. This

perspective on perception necessitates rich representations that capture all

we know about the external world.

Computational models developed in earlier chapters use various represen-
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tational schemes from ones based on a fixed set of parts and a discretized 3D

space (in Chapter 2) to ones that model objects out of blocks connected to

each other at fixed docking locations (in Chapter 4). No doubt, such repre-

sentational schemes are not adequate for fully capturing the rich structure of

objects we encounter in the real world. This has been and still is the funda-

mental question in shape perception. We need representational schemes that

are powerful enough to capture the richness of natural objects and yet at the

same time allow efficient inference and learning. Even though we might seem

quite far from this goal, we are reasonably optimistic that, with the frame-

work we presented in this thesis, we can make progress on this fundamental

question. Future work should challenge our computational model with more

and more empirical data (e.g., similarity judgments on much larger sets of

highly diverse and naturalistic objects and under more naturalistic settings)

and refine our hypothesis on shape perception accordingly.

One reason for our optimism is the dramatic advances made in AI and

particularly in computer vision in the past decade. Advances in generative

modeling and variational techniques are making it possible to scale models

like ours to larger and larger settings (Kingma & Welling, 2014; Goodfellow

et al., 2014; Angelino, Johnson, & Adams, 2016; Mnih & Rezende, 2016;

Rezende et al., 2016). And models that are trained on large amounts of data

lead to more and more improvements in accuracy on many tasks, from object

recognition to segmentation (Bengio, 2009; LeCun et al., 2015). We believe

there is an opportunity for cognitive science here. Most of our computational
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models in cognitive science can account for only a very small set of empirical

data, perhaps from one or two experiments. However, large datasets used

in computer vision provide a far larger set of empirical data we can use to

test and improve our models. If we can fit computational models that use

rich representations like ours to large amounts of empirical data, we can gain

further insights into the nature of our shape representations. This would

require either writing shape grammars for large numbers of different objects

or learning shape grammars via induction directly from data, both of which

are still significant challenges. Recent models that learn deep generative

models with interpretable representations represent promising early steps in

this direction (X. Chen et al., 2016; Siddharth et al., 2016; Kusner, Paige,

& Hernandez-Lobato, 2017). If the rapid progress made in computer vision

in the past decade is any indication, grammar induction on large datasets

will become a possibility soon enough, and we will get one step closer to

understanding object shape perception.
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