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Abstract

■ The format of high-level object representations in temporal-
occipital cortex is a fundamental and as yet unresolved issue.
Here we use fMRI to show that human lateral occipital cortex
(LOC) encodes novel 3-D objects in a multisensory and part-
based format. We show that visual and haptic exploration of
objects leads to similar patterns of neural activity in human
LOC and that the shared variance between visually and hapti-

cally induced patterns of BOLD contrast in LOC reflects the part
structure of the objects. We also show that linear classifiers
trained on neural data from LOC on a subset of the objects suc-
cessfully predict a novel object based on its component part
structure. These data demonstrate a multisensory code for
object representations in LOC that specifies the part structure
of objects. ■

INTRODUCTION

While eating breakfast, the object shape you perceive when
viewing your coffee mug is the same as the shape you per-
ceive when grasping your mug. This phenomenon illus-
trates modality invariance, an important type of perceptual
constancy. Modality invariance suggests that people have
representations of objects that are multisensory (i.e., with
a significant degree of modality independence).
From behavioral studies, we know that participants

trained in the visual modality to recognize novel objects
show partial or near-complete transfer to the haptic modal-
ity, and vice versa (Lawson, 2009; Lacey, Peters, & Sathian,
2007; Norman, Norman, Clayton, Lianekhammy, & Zielke,
2004), and that object similarity is judged in similar ways
across modalities (Gaissert & Wallraven, 2012; Gaissert,
Bülthoff, &Wallraven, 2011; Gaissert,Wallraven, &Bülthoff,
2010; Cooke, Jäkel, Wallraven, & Bülthoff, 2007; Cooke,
Kannengiesser, Wallraven, & Bülthoff, 2006). Those find-
ings suggest that participants base their similarity judg-
ments on a multisensory representation. Where is the
neural substrate for these representations and how are
the representations structured?
Prior brain imaging work suggests that human lateral

occipital cortex (LOC) is one seat of multisensory repre-
sentations of object shape, at least across the visual and
haptic modalities. Previous research shows that LOC rep-
resents visual information about object shape (Grill-
Spector, Kourtzi, & Kanwisher, 2001; Kourtzi & Kanwisher,
2001) and responds to haptic exploration of objects in
sighted and congenitally blind individuals (Naumer et al.,

2010; Amedi, Jacobson, Hendler, Malach, & Zohary, 2002;
James et al., 2002; Amedi, Malach, Hendler, Peled, &
Zohary, 2001). Furthermore, neural shape similarity matri-
ces from blind participants are correlated with neural shape
similarity matrices from sighted individuals (Peelen, He,
Han, Caramazza, & Bi, 2014), suggesting that LOC is biased
to represent object shape even if the principal modality of
input is not vision.

Todate, researchers have reliedmainly on twomeasures—
amount of neural “activation” (e.g., BOLD contrast) and
correlations between neural similarity matrices—to argue
for the multisensory nature of representations in LOC.
Most studies compared the amount of BOLD contrast in
LOC in response to visually and haptically presented stim-
uli. For example, James et al. (2002) showed that both
visual and haptic exploration of objects led to neural ac-
tivity in LOC. Similarly, Amedi and colleagues (2001,
2002) argued for multisensory shape representations in
LOC on the basis of increased neural activity in response
to objects compared with textures for visual and haptic
stimuli. In a more recent study, Naumer and colleagues
(2010) showed that the amount of neural activation when
stimuli are presented through both visual and haptic
modalities is higher than the amount of neural activation
when stimuli are presented through a single modality.

Importantly, comparing the amount of activation in re-
sponse to visual and haptic presentation of objects is an
indirect test of multimodality of neural representations. It
is quite possible that LOC carries distinct modality-specific
representations for both visual and haptic object shape. A
stricter test is possible by measuring the similarity in pat-
terns of neural activity. Recently, Peelen and colleagues
(2014) calculated neural similarity matrices for a set ofUniversity of Rochester
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objects presented visually and verbally to blind and sighted
individuals. By measuring the correlations between these
neural similarity matrices, Peelen and colleagues (2014)
argued that LOC carries a cross-modal shape representa-
tion. With respect to our current goals, there are two lim-
itations associated with this study. First, Peelen and
colleagues (2014) did not measure neural activity in re-
sponse to haptic stimuli. Second, the correlation between
two neural similarity matrices is a measure of second-order
relations between two representations. It is possible for
visual and haptic neural similarity matrices to be highly
correlated even though the visual and haptic representa-
tions themselves are not. Here, we present a stricter test
of the multisensory nature of object representations in
LOC by correlating activations from different modalities
directly to form cross-modal neural similarity matrices.
Our analyses show that cross-modal correlation of an ob-
ject with itself is larger than the cross-modal correlations
among different objects and that objects can be decoded
cross-modally from neural activations in LOC.

The second question we focus on is concerned with
the structure of multisensory shape representations in
LOC. Two competing theories emerge from previous re-
search on object shape representations. First, view-based
theories argue that the representation for an object is a
collection of 2-D images of the object from different
views (Peissig & Tarr, 2007). View dependency of object
recognition is usually advanced as the main evidence for
the view-based hypothesis. For example, a previous study
(Bülthoff & Edelman, 1992) showed that the recognition
performance for previously seen views of an object is bet-
ter than the performance for views of the same object
not previously seen. However, the view-based hypothesis
is difficult to reconcile with the hypothesis that LOC en-
codes multisensory object representations, because the
view-based hypothesis presumes a strictly visual nature
of object representations.

Alternatives to the view-based hypothesis are part-
based or structural description theories (e.g., Peissig &
Tarr, 2007; Riddoch & Humphreys, 1987). These theories
assume that objects are represented as collections of
parts and the spatial relations among these parts. There
is behavioral and neural evidence for both aspects of the
part-based theory: representation of parts and spatial
relations among those parts. An influential study by
Biederman (1987) showed that priming is principally
mediated by parts, and recognition suffers dramatically
when part-related information is removed. Later studies
also investigated whether spatial relations are explicitly
represented. For example, Hayworth, Lescroart, and
Biederman (2011) found that it was impossible for partic-
ipants to ignore relations between objects in a scene
even when that information was irrelevant. Importantly
for our current study, previous work has found evidence
that LOC encodes object parts and spatial relations ex-
plicitly. Using fMRI adaptation, Hayworth and Biederman
(2006) found that, when part-related information was

removed from an image, there was a release from adap-
tation in LOC, suggesting that different parts involve dif-
ferent LOC representations. A separate study (Hayworth
et al., 2011) showed that a comparable amount of release
from adaptation in LOC is observed when the spatial re-
lation between two objects is changed as when one of
the objects is replaced with a new object. This suggests
that spatial relations are encoded explicitly by this region.
More recently, Guggenmos and colleagues (2015) tested
whether LOC encodes objects in a part-based or holistic
manner by measuring decoding accuracy for split and
intact objects. They showed that a classifier trained on
neural activations for intact objects can successfully dis-
criminate between activations for split objects (e.g., a
camera with its lens and body separate) and vice versa.
These studies suggest that LOC represents objects in a
part-based format. Here, we provide further evidence
for this hypothesis by showing that a novel object can
be decoded from the neural activations in LOC based
on part-based representations.

METHODS

Participants

Twelve (six in Experiment 1 and six in Experiment 2) Uni-
versity of Rochester students (mean age= 21.5 years, SD=
1.57 years, five men) participated in the study in exchange
for payment. All participants were right-handed (assessed
with the Edinburgh Handedness Questionnaire), had
normal or corrected-to normal vision, and had no history
of neurological disorders. All participants gave written
informed consent in accordance with the University of
Rochester research subjects review board.

General Procedure

Stimulus presentation was controlled with “A Simple Frame-
work” (Schwarzbach, 2011) written in MATLAB Psychtool-
box (Brainard, 1997; Pelli, 1997) or E-Prime Professional
Software 2.0 (Psychology Software Tools, Inc., Sharpsburg,
PA). For all fMRI experiments with visual presentation of
stimuli, participants viewed stimuli binocularly through a
mirror attached to the head coil adjusted to allow foveal
viewing of a back-projectedmonitor (temporal resolution=
120 Hz). Each participant completed four 1-hr sessions:
one session for retinotopic mapping and somatosensory
and motor cortex mapping (data not analyzed herein),
one session for an object-responsive cortex localizer, and
two sessions for the experiment proper (visual and haptic
exploration of objects).

Object-responsive Cortex Localizer (LOC Localizer)

The session began with (i) one 6-min run of resting state
fMRI, (ii) eight 3-min runs of the object-responsive cortex
localizer experiment, and (iii) one 6-min run of resting
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state fMRI. The resting state fMRI data are not analyzed
herein.
To localize object-responsive areas in the brain, par-

ticipants viewed scrambled and intact images of tools,
animals, famous faces, and famous places (see Chen,
Garcea, & Mahon, in press, for all details on stimuli and
design; also see Fintzi & Mahon, 2013). For each of four
categories (tools, animals, faces, and places) 12 items
were selected (e.g., hammer, Bill Clinton, etc.), and for
each item, eight exemplars (gray-scale photographs)
were selected (e.g., eight different hammers, eight differ-
ent pictures of Bill Clinton, etc.). This resulted in a total
of 96 images per category and 384 total images. Phase-
scrambled versions of the stimuli were created to serve
as a baseline condition. Participants viewed the images in
a miniblock design. Within each 6-sec miniblock, 12 stimuli
from the same category were presented, each for 500 msec
(0 msec ISI), and 6-sec fixation periods were presented
between miniblocks. Within each run, eight miniblocks
of intact images and four miniblocks of phase-scrambled
versions of the stimuli were presented with the constraint
that a category of objects did not repeat during two suc-
cessive miniblock presentations. All participants completed
eight runs of the object-responsive cortex localizer experi-
ment (91 volumes per run).

Experimental Materials

The stimuli used in Experiment 1 were taken from the set
of objects known as Fribbles (Tarr, 2003). We picked 12
Fribbles (four objects from three categories) for Experi-
ment 1. For the stimuli used in Experiment 2, we created

a new set of objects by taking parts from Fribbles and
combining them in the following way. Each object is
made up of five components where the body (one com-
ponent) is common to all objects. The remaining four
components are located at four fixed locations on the
body. For each location, there are two possible parts or
values that the component can take (i.e., 24, hence 16
objects). Figures 1 and 2A show the entire set of objects
used in Experiments 1 and 2, respectively. Figure 7 shows
how we constructed the set of objects for Experiment 2
from the parts and how these were combined to create
an example object. For the haptic stimuli, we used 3-D-
printed plastic models of the objects. The physical ob-
jects were approximately 11.5 cm long, 6.0 cm wide,
and 7.5 cm high.

To summarize, the stimuli used in Experiment 1 were
drawn from three “categories” of objects (four items per
category) but the part structure was not explicitly (i.e.,
factorially) manipulated across the stimulus set. In con-
trast, in Experiment 2, the materials were created by cre-
ating all possible combinations of part values (two values)
at each of four possible locations, leading to a factorial
stimulus space defined by part structure.

Visual and Haptic Exploration of Novel Objects
(Two Sessions)

Each participant completed two 1-hr sessions of the ex-
periment proper. Each session was composed of four
runs, two runs dedicated to visual exploration of
objects and two runs dedicated to haptic exploration
of objects. In the first experiment, the participants

Figure 1. Experimental stimuli
used in Experiment 1. The
stimuli are taken from the set
of novel objects known as
Fribbles (Tarr, 2003).
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observed each novel object stimulus in the visual and
haptic conditions; that is, all 12 objects were presented
in each run. In the second experiment, the novel object
stimuli were divided (arbitrarily) into two sets, A and B.
Within a given scanning session, a participant was pre-
sented (for instance) Set A for haptic exploration and
Set B for visual exploration; that is, in each run, partic-
ipants saw eight objects. In their second session for the
experiment proper, that same participant was presented
Set B for haptic exploration and Set A for visual explora-

tion. This ensured that participants only viewed or only
haptically explored a given object in a given scanning ses-
sion. The order of a given item set (Set A first, Set B first)
by modality (visual, haptic) was also counterbalanced
across participants. For both Experiments 1 and 2, visual
and haptic exploration was blocked by run, organized in an
ABBA/BAAB fashion, and counterbalanced evenly across
participants.
While laying supine in the scanner, participants were

visually presented with the objects or were required to

Figure 2. (A) Experimental stimuli used in Experiment 2. The stimuli are based on Fribbles (Tarr, 2003). Each object is made up of four components at
four fixed locations. For each location, there are two possible values or parts (i.e., 24; hence 16 objects). (B) Results of agglomerative clustering applied
to behavioral similarity data from the visual condition. In the behavioral experiment (Erdogan, Yildirim, & Jacobs 2015), participants either viewed
or haptically explored a pair of objects and provided similarity ratings on a scale of 1–7. Similarity judgments are averaged across participants to get
a condition level similarity matrix. (C) Results of agglomerative clustering applied to haptic behavioral similarity data. (D) Scatter plot of cross-modal
behavioral similarity judgments versus similarities calculated from part structure. In the cross-modal condition, participants viewed one of the objects and
haptically explored the other object. Similarities based on part structure are calculated by counting the number of shared parts between pairs of objects.
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keep their eyes closed while haptically exploring the
objects. In the haptic condition, the objects were handed
to the participant by the experimenter. For runs in which
items were visually presented, participants were in-
structed to deploy their attention to the features of the
object.
In the visual condition in Experiment 1, the objects

were presented in the center of the screen for the par-
ticipants to fixate upon. Miniblocks were 4 sec long and
were interspersed by 8-sec fixation periods. Each object
was presented in four miniblocks per run, with the con-
straint that the same object did not repeat on two suc-
cessive miniblocks. This meant that there were a total
of 48 (12 × 4) object presentations in each run. In
Experiment 2, the objects were presented centrally and
rotated 40 degrees per second along the vertical axis
(i.e., the objects revolved in the depth plane). Miniblocks
in the visual condition were 9 sec long and were inter-
spersed by 9-sec fixation periods. Each object was pre-
sented in four miniblocks per run, in a similar manner
to Experiment 1. Therefore, there were in total 32 (8 ×
4) object presentations in each run. In the haptic condi-
tion, participants were instructed to form a mental image
of the plastic object while haptically exploring the object
with their hands. In Experiment 1, miniblocks were 12 sec
long and were interspersed by 9-sec periods in which their
hands were unoccupied. Each plastic object was presented
in four miniblocks per run, with the constraint that the
same item did not repeat across two successive miniblock
presentations. Miniblocks in Experiment 2 were 16 sec
long and were interspersed by 16-sec periods in which
their hands were unoccupied. Each plastic object was pre-
sented in four miniblocks per run, in a similar manner to
Experiment 1.
In our experiments, participants performed no explicit

task other than visually or haptically exploring the pre-
sented objects. We believe such a design enables us to
investigate visual-haptic processing without any potential
task-related effects. Previous research shows that, even
in the absence of any explicit task, visual and haptic
processing converges in LOC (Naumer et al., 2010). Al-
though our participants did not perform an explicit task,
we asked them to mentally picture the object they were
exploring in the haptic condition. This might raise suspi-
cions about whether the activation in LOC was due to
mental imagery rather than haptic processing. However,
previous research suggests that LOC is minimally acti-
vated by mental imagery ( James et al., 2002; Amedi
et al., 2001).
Before the experiment began, participants were intro-

duced to comparable plastic objects outside the scanner.
These objects were not used in the experiment proper
and were dissimilar to the experimental stimuli. Visual
analogs of the objects were also presented to the partic-
ipants to inform them of the format of the visual exper-
iment and to practice the implicit task that they were
required to carry out while in the scanner.

MR Acquisition and Analysis

MRI Parameters

Whole-brain BOLD imaging was conducted on a 3-T
Siemens (Amsterdam, TheNertherlands)MAGNETOMTrio
scanner with a 32-channel head coil located at the Roch-
ester Center for Brain Imaging. High-resolution structural
T1 contrast images were acquired using a magnetization
prepared rapid gradient-echo pulse sequence at the start
of each participant’s first scanning session (repetition
time = 2530, echo time = 3.44 msec, flip angle = 7°, field
of view = 256 mm, matrix = 256 × 256, 1 × 1 × 1 mm
sagittal left-to-right slices). An EPI pulse sequence was
used for T2* contrast (repetition time = 2000 msec, echo
time = 30 msec, flip angle = 90°, field of view = 256 ×
256 mm, matrix = 64 × 64, 30 sagittal left-to-right slices,
voxel size = 4 × 4 × 4 mm). The first six volumes of each
run were discarded to allow for signal equilibration (four
at acquisition and two at analysis).

fMRI Data Analysis

fMRI data were analyzed with the BrainVoyager software
package (Version 2.8) and in-house scripts drawing on the
BVQX toolbox written in MATLAB (wiki2.brainvoyager.
com/bvqxtools). Preprocessing of the functional data in-
cluded, in the following order, slice scan time correction
(sinc interpolation), motion correction with respect to
the first volume of the first functional run, and linear trend
removal in the temporal domain (cutoff: two cycles within
the run). Functional data were registered (after contrast
inversion of the first volume) to high-resolution deskulled
anatomy on a participant-by-participant basis in native
space. For each participant, echo-planar and anatomi-
cal volumes were transformed into standardized space
(Talairach & Tournoux, 1988). Functional data for the
localizer experiment (object-responsive cortex localizer)
were smoothed at 6 mm FWHM (1.5 mm voxels) and inter-
polated to 3mm3 voxels; functional data for the experiment
proper (visual and haptic exploration of objects) were
interpolated to 3 mm3 but were not spatially smoothed.

For all experiments, the general linear model was used
to fit beta estimates to the experimental events of inter-
est. Experimental events were convolved with a standard
2-gamma hemodynamic response function. The first de-
rivatives of 3-D motion correction from each run were
added to all models as regressors of no interest to attract
variance attributable to head movement. Thus, all multi-
voxel pattern analyses were performed over beta estimates.

In all multivoxel analyses, we normalized individual voxel
activations within a run to remove baseline differences
across runs. In other words, for each voxel, we subtracted
the mean activation for that voxel over all objects in the run
and divided it by the standard deviation of that voxel’s ac-
tivation across objects. Additionally, for linear correlation
multivoxel analyses, activations for all eight repeats of a
single item (in a given modality, i.e., visual/haptic) were
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averaged to obtain a single activation vector for each item. In
our correlation analyses, we transformed correlation values
using Fisher’s z transformation and ran all statistical tests on
those transformed values. When calculating correlations be-
tween correlationmatrices, weusedonly the upper triangles
of matrices. All statistical tests were two-tailed. For training
the support vector machine (SVM) for decoding, we used
the library libsvm (www.csie.ntu.edu.tw/∼cjlin/libsvm/). We
used linear kernels with cost parameter set to 1.

Whole-brain pattern analyses were performed using a
searchlight approach (Kriegeskorte, Goebel, & Bandettini,
2006). Whole-brain searchlight maps were computed with
a mask fit to the deskulled Talairach anatomy of individ-
ual participants. The “searchlight” passes over each voxel
(in each participant) and extracts the beta estimates (for
16 items) for the cube of voxels (n = 125) that surround
the voxel. The analysis was carried out based on the pattern
of responses across the 125 voxels, and the results were
assigned to the center voxel of that cube. All whole-brain
analyses were thresholded at p < .005 (corrected), cluster
threshold for nine contiguous voxels. If no regions were
observed at that threshold, a more lenient threshold was
used ( p < .05, uncorrected, nine voxels).

Definition of ROIs (LOC)

Left and right LOC were identified at the group level
using the object-responsive localizer experiment with
the contrast of [intact images] > [scrambled images].
The result used cluster size corrected alpha levels by
thresholding individual voxels at p < .05 (uncorrected)
and applying a subsequent cluster size threshold gener-
ated with a Monte Carlo style permutation test (1000 iter-
ations) on cluster size to determine the appropriate alpha
level that maintains Type I error at 1% (using AlphaSim
as implemented in Brain Voyager). The Talairach coor-

dinates were as follows: left LOC: x = −40, y = −71, z =
−9; right LOC: x= 38, y=−65, z=−12. We note as well
that none of the results in this study change qualitatively
if LOC is defined individually for each participant, rather
than at the group level.

RESULTS

Our study consisted of two experiments. In both experi-
ments, participants either viewed or haptically explored a
set of objects during fMRI. The stimuli for Experiment 1
consisted of 12 objects (four objects from three catego-
ries; see Figure 1) picked from the set of objects known
as Fribbles (Tarr, 2003). For Experiment 2, we created a
novel set of objects based on Fribbles. Each object in this
set was composed of one component that was common
to all objects and four components that varied across
objects. The variable components were located at four
fixed locations (Figure 2A), and there were two possible
parts (or values) that each component could take (i.e.,
24 = 16 objects in total).

Cross-modal Decoding of Novel Objects in LOC

If object representations in LOC are multisensory across
haptic and visual modalities, it should be possible to de-
code object identity using cross-modal representational
similarity analyses. To that end, we correlated the voxel
patterns in LOC elicited when a participant was viewing
objects with the voxel patterns elicited when the same
participant haptically explored the objects. The resulting
representational similarity analysis quantifies the similar-
ity of voxel patterns across modalities, comparing every
object to every other object as well as to itself. Previous
studies have calculated neural similarity matrices sepa-
rately for each modality and then subsequently correlated

Figure 3. Comparison between diagonals and nondiagonals of cross-modal similarity matrices for both experiments. Participants 1–6 are in
Experiment 1, and participants 7–12 are in Experiment 2. Avg = average of all 12 participants. (A) Results for left LOC. (B) Results for right LOC.
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those matrices (e.g., Peelen et al., 2014). Such an approach
amounts to showing that neural correlations among ob-
jects in one modality correlate with the neural correlations
among objects in another modality. The goal of the current
analysis is to run a stricter test of the hypothesis that LOC
encodes objects in a multisensory manner by correlating
voxel patterns from different modalities directly to form a
cross-modal neural similarity matrix.
Two predictions are made by the hypothesis that object

representations in LOC are multisensory. First, cross-
modal correlations between the visual and haptic voxel
patterns for the same object will be higher than cross-
modal correlations among the voxel patterns for differ-
ent objects (i.e., the diagonal values will be greater than

the nondiagonal values in the cross-modal representa-
tional similarity matrix). The results of this analysis for
each participant in Experiments 1 and 2 can be seen in
Figure 3. For every participant in right LOC and for 10
of 12 participants in left LOC, cross-modal correlations
were in fact higher for identical objects than they were
for different objects (see Figure 4 for average cross-
modal correlation matrices). Because an initial ANOVA
analysis found no effect of Experiment (L-LOC, F = 0.17,
p = .69; R-LOC, F = 0.48, p = .50), we combined the
results from both experiments. Diagonal versus non-
diagonal differences reached statistical significance in both
L-LOC and R-LOC (L-LOC, difference = 0.06; t= 3.86, p <
.004; R-LOC, difference = 0.05; t = 5.08, p < .001),

Figure 4. Cross-modal similarity matrices for both experiments. (A, B) Cross-modal similarity matrices calculated from left (A) and right (B) LOC
activations from Experiment 1. (C, D) Cross-modal similarity matrices calculated from left (C) and right (D) LOC activations from Experiment 2.
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indicating that LOC contains multisensory representations
of objects. A second and stricter prediction is that it should
be possible to decode object identity using the repre-
sentational similarity matrix by testing whether each ob-
ject is more correlated with itself (across modalities)
than it is with each of the other objects in the set (also
across modalities). We calculated the decoding accuracies
for each participant and compared these to the chance
decoding accuracy (1/12 for Experiment 1 and 1/16 for
Experiment 2). Again, because an initial ANOVA analysis
found no effect of Experiment (L-LOC, F = 0.67, p =
.43; R-LOC, F = 0.82, p = .39), we combined the results
from both experiments. Our results showed that it is pos-

sible to decode object identity cross-modally in both L-LOC
and R-LOC (L-LOC, difference from chance accuracy =
0.09, t = 2.48, p < .04; R-LOC, difference = 0.10, t =
3.48, p < .006). These data indicate that LOC contains
multisensory representations of objects.
We then tested whether multisensory coding of novel

objects was specific to LOC or was a property observed
throughout the brain. To that end, a whole brain searchlight
analysis was conducted in which each voxel was coded
according to whether it (and its immediate neighbors)
showed higher pattern similarity for an object correlated
with itself (across modalities) than with other objects (also
cross modality). Converging with the ROI analyses, the

Figure 5.Whole searchlight analysis of brain regions in which the diagonal of the cross-modal neural similarity matrix is greater than the off-diagonal
values. The cross-modal similarity matrix was created by correlating the voxel patterns elicited when visually exploring objects with the voxel
patterns elicited when haptically exploring objects. If the diagonal of the matrix is greater than the off-diagonal values, that means that the pattern
of voxel activations elicited by an object (across modalities) is more similar than the patterns elicited by two different objects.
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results (Figure 5) identified the right LOC in both exper-
iments (see Table 1 for coordinates). The left posterior
temporal-occipital cortex was also identified in the search-
light analyses from both experiments.

A Common Similarity Space of Novel Objects as
Derived from Neural and Behavioral Metrics

The stimuli used in Experiment 2 were designed to have
a clear part-based structure for the purpose of testing the
part-based hypothesis through representational similarity

and neural decoding analyses. In a prior study (Erdogan,
Yildirim, & Jacobs, 2015), we collected behavioral simi-
larity judgments for these stimuli while participants
viewed or haptically explored the objects. Similarity
ratings consisted of Likert similarity ratings (range 1:7)
for each pair of objects. We evaluated how well partici-
pants’ judgments of the similarity among the objects
were explained by the part-based structure of the objects.
As shown in Figure 2D, the agreement was extremely
good (R2 = .96). This indicates that participants perceive
the similarity among these object stimuli in terms of
their part structure. Therefore, a significant agreement

Table 1. Talairach Coordinates, Cluster Sizes, Significance Levels, and Anatomical Regions for the Searchlight Results

Region

Talairach Coordinates
Cluster Size

(mm2) t px y z

Exp1: Diagonal of the Cross-modal Neural Similarity Matrix > Off-diagonal Values (p < .05, Cluster > 9 Voxels)

Precentral gyrus LH −51 −13 34 6790 8.55 <.001

Middle occipital gyrus LH −24 −88 19 25007 12.28 <.001

Lateral occipital cortex LH −39 −67 −14 8.40 <.001

Precentral gyrus RH 57 −1 19 1469 7.06 <.001

Postcentral gyrus RH 63 −25 38 3175 7.51 <.001

Lateral occipital cortex RH 39 −55 −5 23568 13.83 <.001

Exp2: Diagonal of the Cross-modal Neural Similarity Matrix > Off-diagonal Values (p < .05, Cluster > 9 Voxels)

Inferior frontal gyrus LH −39 20 10 1100 5.47 <.01

Precentral gyrus LH −30 −16 52 1514 7.30 <.001

Superior parietal lobule LH −21 −58 58 4417 12.27 <.001

Inferior frontal gyrus RH 39 17 16 1450 6.19 <.002

Superior temporal gyrus RH 51 −25 7 877 10.04 <.001

Lateral occipital cortex RH 50 −62 −18 257 3.88 <.01

Exp2: Correlation between Neural and Behavioral Similarity for Visual Exploration of Objects (p < .05, Cluster > 9 Voxels)

Parietal lobe LH −18 −58 46 539 8.67 <.001

Lateral occipital cortex RH 42 −70 1 742 9.84 <.001

Lingual gyrus RH 0 −73 −11 2607 6.07 <.002

Exp2: Correlation between Neural and Behavioral Similarity for Haptic Exploration of Objects (p < .005, Cluster > 9 Voxels)

Lateral occipital cortex LH −39 −67 −14 1230 9.99 <.001

Precentral gyrus RH 42 −13 34 1577 10.78 <.001

Postcentral gyrus RH 51 20 34 2323 19.19 <.001

Parietal lobe RH 9 −37 61 3143 12.86 <.001

Superior temporal gyrus RH 42 −49 19 2110 13.79 <.001

Lateral occipital cortex RH 33 −73 −8 2190 11.84 <.001

LH = left hemisphere; RH = right hemisphere.
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between the neural similarity matrices and behavioral
similarity judgments will lend support to both the hy-
pothesis that LOC representations are multisensory and
to the hypothesis that they are part based. We tested this
prediction by calculating correlations between behavioral
similarity judgments and measures of object similarity
derived from neural data. A visual similarity matrix was
formed by correlating voxel patterns when participants
viewed the objects during fMRI, and a haptic similarity
matrix was formed when participants haptically explored
the objects during fMRI. As predicted by the hypothesis
that LOC encodes multisensory, part-based representa-
tions of objects, the neural similarity matrices obtained
from R-LOC for both modalities were correlated with
the behavioral similarity matrices (neural similarity mea-
sures based on visual exploration: L-LOC: r= .02, t= 1.10,
p = .33, R-LOC: r = .08, t = 4.21, p < .009; Haptic con-
dition, L-LOC: r = .08, t = 1.52, p = .187, R-LOC: r =
.14, t = 3.28, p < .03).

To evaluate the degree to which the observed relation-
ship between behavioral and neural similarity measures
was specific to LOC, we again carried out a whole-brain
searchlight analysis that maps how similar the neural sim-
ilarity matrices were to the behavioral similarity matrices.
The most stringent test of whether LOC encodes multi-
sensory representations of novel objects is to test whether
LOC is identified by two independent searchlight ana-
lyses: The first analysis relates neural and behavioral sim-
ilarity data for visual exploration of objects, and the
second analysis relates neural and behavioral similarity
data for haptic exploration of objects. Thus, the key test
is whether these two independent searchlight analyses
overlap in LOC. The results indicate overlap in right
LOC (see Table 1 for Talairach coordinates). As can be
seen in Figure 6, there is good overlap (35 voxels,
958 mm3, across the maps in Figure 6A, B, and C) between
the independent functional definition of right LOC (objects
> scrambled images) and right LOC as identified by the
two independent multivoxel pattern searchlight analyses.
Interestingly, the whole-brain searchlight analysis over
haptic data also identified several other regions in the
temporal and frontal lobes involved in sensory processing
(see Table 1 for coordinates).

Object Category Representations in LOC

Stimuli in Experiment 1 formed three families or categories
of objects (Figure 1). This raises the possibility of evalu-
ating whether LOC object representations encode category
structure. Using analyses of the LOC cross-modal similarity
matrix, we found that neural activations were more simi-
lar when considering two objects belonging to the same
category than when considering two objects belonging to
different categories. Using decoding analyses, we found
that we can decode the category to which an object belongs
at above-chance levels. However, because we are uncertain
about the proper interpretation of these results, we do

not study LOC object category representations here.
One possibility is that LOC encodes the category structure
of objects. Another possibility is that LOC encodes object
shape and that the results regarding category structure are
due to the fact that objects belonging to the same cate-
gory have similar shapes in our experiment and objects
belonging to different categories have dissimilar shapes.
Because we cannot distinguish these two possibilities

Figure 6. Overlap in right LOC for the (A) functional localizer (i.e.,
objects > scrambled objects), (B) a whole brain searchlight analysis
of the correlation between neural similarity matrices and behavioral
similarity for visual exploration of objects, and (C) a whole brain
searchlight analysis of the correlation between neural similarity matrices
and behavioral similarity for haptic exploration of objects.
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based on the stimuli used here and because there is sub-
stantial evidence indicating that LOC represents object
shape, a stronger test of the nature of LOC object repre-
sentations is provided by fine-grained analysis of the part
structure within the materials from Experiment 2.

Part-based Object Representations in LOC

Finally, we sought to directly test the hypothesis that
LOC encodes objects in a part-based manner. If the
shape representations in LOC are encoding object parts,
we should be able to decode the parts that make up an
object from neural activations. We focused these analyses
only on our second experiment because the stimuli in
our first experiment are not suited to testing the part-
based hypothesis. Although all objects used in Experi-
ment 1 have a clear part-based structure, each part is at
most shared by two objects, which drastically limits the
amount of data available for decoding part identities.
However, the stimuli in our second experiment were de-
signed specifically to test the part-based hypothesis, with
each part being shared by 8 of 16 objects in the stimulus set.
The objects in our second experiment can be represented

as four binary digits with each digit coding which one of
the two possible parts for each of the part locations is
present (see Figure 7 for a schematic of this analysis
approach). In our decoding analyses, we thus sought
to predict the four-digit binary representation of each
object using neural activity patterns. We trained four
separate linear SVMs, one for each location. Each SVM
model was trained to predict which of the two possible
part values for that location was present in an object.
Each of the four classifiers was trained on 15 of the
16 objects, and the classifiers were tested by having
them jointly predict the four-digit binary representation
for the 16th object. If all four of the predictions (one for
each location) were correct, we counted that as a suc-
cessful decoding of the object (see Figure 7B). Thus,
chance for this classification test was 0.54 = 0.0625. This
analysis approach was performed using 16-fold leave-one-
out cross-validation, each time leaving one object out (for
test) and training the classifiers on the remaining 15 ob-
jects. We then averaged the classification accuracies
over folds to obtain an estimate of the classification ac-
curacy across all objects for each participant. Statistical
analysis was then performed over subject means. The

Figure 7. (A) Design of stimuli.
Each object is composed of
four components at four fixed
locations. (Parts are colored
for illustration purposes. All
images were grayscale in the
experiment.) (B) Schematic of
the decoding model. Neural
activations for 15 of the objects
are used as the training set to
train four linear SVMs to predict
parts at each location. Then,
the trained classifiers are used
to predict the parts of the
left-out test object, and these
predictions are compared
with the true parts of the
object.
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results of this analysis indicated that it was possible to
decode novel objects in LOC, both for fMRI data ob-
tained during visual and during haptic exploration of the
objects (visual condition, L-LOC: classification accuracy =
0.198, t = 3.61, p < .016, R-LOC: classification accuracy =
0.250, t = 5.81, p < .003; haptic condition, L-LOC: classifi-
cation accuracy = 0.167, t= 2.50, p= .055, R-LOC: classifi-
cation accuracy = 0.302, t = 5.86, p < .003).

DISCUSSION

We have shown that it is possible to decode object iden-
tity from a cross-modal similarity matrix created by cor-
relating LOC voxel patterns during visual and haptic
exploration of the same set of objects. This suggests that
there is a unique neural code generated during percep-
tual exploration of each of the novel objects that is similar
regardless of whether the sensory modality is vision or
touch. We also found that linear classifiers successfully
predict a novel object based on its part structure. Thus,
the fundamental units of object representation in LOC
are expressed in terms of an object’s composite parts.
These findings provide further evidence for part-based
visual representations of objects in LOC and multisensory
representations of whole objects, at least across the hap-
tic and visual modalities (Peelen et al., 2014; Naumer
et al., 2010; Amedi et al., 2001, 2002; James et al., 2002).
Crucially, our cross-modal decoding analyses relied on a
direct comparison between activations from different
modalities, representing a more direct test of the multi-
sensory nature of object representations in LOC than
was present in prior studies. Additionally, we believe
our part-based decoding of novel objects presents a sig-
nificant step towards understanding the nature of object
representations in LOC. The only previous study that
used a similar decoding analysis (Guggenmos et al., 2015)
employed simpler stimuli (two-part objects) and presented
objects only visually. Our study used a richer set of stimuli
and showed that decoding of a novel object is possible
from both visual and haptic activation in LOC. We believe
that the findings we have reported strongly suggest that
object representations in LOC are multisensory and part
based.

Our results show an interesting hemispheric asym-
metry; in most of our analyses, the findings are stronger
in R-LOC. We do not have a clear understanding of why
this is the case. A recent study suggests that haptic pro-
cessing is stronger in LOC for the nondominant hand
(Yalachkov, Kaiser, Doehrmann, & Naumer, 2015). How-
ever, it is important to note that participants in our ex-
periment used both of their hands to explore objects.
Additionally, these hemispheric differences are seen in
the visual condition as well, making an explanation based
on haptic processing unlikely. Future research should
investigate whether this hemispheric asymmetry is a
consistent characteristic of object shape processing or
merely an artifact of our particular sample.

Although we have referred to the object representa-
tions in LOC as multisensory, it is worth pointing out that
our study focused on visual and haptic processing, simply
because shape information is conveyed mainly through
these two modalities. For example, as previous research
(Naumer et al., 2010; Amedi et al., 2002) shows, LOC
does not respond to auditory stimulation. Similarly, our
study says little about the representation of objects that
lack a clear part-based structure, for example, bell pep-
pers, or that are processed holistically, for example, faces.
The question of how an object without a clear part-based
structure is represented lies at a finer level than that on
which our study focused; we did not investigate how an
individual part might be neurally represented but whether
parts are explicitly represented in the first place. Future
research should focus on this more difficult question of
how individual parts are represented.
In this study, we focused mainly on LOC and the nature

of object representations in this region. However, looking
at Table 1, we see that our searchlight results identified
other regions, for instance, the precentral gyrus and the
left posterior temporal-occipital cortex. Although none
of those regions show the consistent activity that LOC
shows across various analyses, it is possible that multi-
sensory object representations reside in a larger network
of brain regions and likely that multisensory object repre-
sentations in LOC are embedded in a broader network of
regions that support multisensory processing. This is an
empirical question that needs to be addressed by future
research.
A key claim of the part-based hypothesis is that objects

are represented as a combination of shape primitives
from a finite set. Although our data cannot speak to the
inventory of shape-based primitives that the brain may
encode, further research using the methods we have
developed may be able to describe that inventory. A sec-
ond key aspect of part-based theories of object represen-
tation is that spatial relations among parts are directly
represented. The findings we have reported motivate a
new approach to test whether the spatial arrangement
among an object’s parts are encoded in the same region
(LOC) that encodes the part information. Alternatively,
information about the spatial arrangement of parts may
be stored elsewhere in the brain.
Our findings also bear on the principal alternative

theoretical model to part-based object representations:
image- or view-based models. View-based theories argue
that the representation of an object is a concatenation of
2-D images of the object from different views (for discus-
sion, see Peissig & Tarr, 2007). View dependency in ob-
ject recognition is advanced as the main evidence for the
view-based hypothesis. However, view-based models
have difficulty accounting for our finding that there is a
high degree of similarity in the voxel patterns elicited by
haptic and visual exploration of objects and that the shared
variance in voxel patternmaps onto thepart structure of the
stimuli.
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In this study, we have presented evidence that LOC
carries multisensory and part-based representations of
objects. In addition to the empirical evidence presented
here and in earlier studies, we believe this hypothesis is
also appealing from a theoretical perspective as it ele-
gantly captures how information can be transferred
across modalities, how inputs from multiple modalities
can be combined, and more generally, how we cope with
a world that is in its essence multisensory.
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